The application of vibrational spectroscopy in the
pharmaceutical industry is widely investigated, from the quality assurance of
the product during the production process control to the final products’
quality control and the authentication of products on the markets. This study
focuses on non-contact and noninvasive detection and identification of pain-relievers
at 1-5 meters standoff distances. The specimens analyzed include standard
laboratory-grade active ingredients and
commercially available pain relievers in powder, solid and liquid forms. All
the remote measurements captured revealed the Raman signatures of the
specimens, with varying peak intensities. To correlate the band intensities
captured with the standoff distances between the laser source and the
specimens, the intensity ratios of the two prominent peaks of the laboratory
grade reference active ingredient (1607 and 1319 cm-1) normalized
with 1319 cm-1 are used. The results of the study suggest the
viability of standoff Raman spectroscopy for routine monitoring and
identification of pharma-ceuticals, including counterfeit pain
relievers.
References
[1]
Sharma, S.K., Lucey, P.G., Ghosh, M., Hubble, H.W. and Horton, K.A. (2003) Standoff Raman Spectroscopic Detection of Minerals on Planetary Surfaces. Spectrochimica Acta Part A, 59, 2391-2407. https://doi.org/10.1016/S1386-1425(03)00080-5
[2]
Hirschfeld, T., Schildkraut, E.R., Tannenbaum, H. and Tanenbaum, D. (1973) Remote Spectroscopic Analysis of ppm-Level Air Pollutants by Raman Spectroscopy. Applied Physics Letters, 22, 38-40. https://doi.org/10.1063/1.1654465
[3]
Carter, J.C., Angel, S.M., Snyder, M.L., Scaffidi, J., Whipple, R.E. and Reynolds, J.G. (2005) Standoff Detection of High Explosive Materials at 50 Meters in Ambient Light Conditions Using a Small Raman Instrument. Applied Spectroscopy, 59, 769-775. https://doi.org/10.1366/0003702054280612
[4]
Wallin, S., Pettersson, A., Östmarkand, H. and Hobro, A. (2009) Laser-Based Standoff Detection of Explosives: A Critical Review. Analytical and Bioanalytical Chemistry, 395, 259-274. https://doi.org/10.1007/s00216-009-2844-3
[5]
Zou, M.Q., Zhang, X.F., Qi, X., Ma, H.L., Dong, Y., Liu, C.W., Guo, X. and Wang, H. (2009) Rapid Authentication of Olive Oil Adulteration by Raman Spectrometry. Journal of Agricultural Food Chemistry, 57, 6001-6006. https://doi.org/10.1021/jf900217s
[6]
Farley, C., Kassu, A., Bose, N., Jackson-Davis, A., Boateng, J., Ruffin, P. and Sharma, A. (2017) Short Distance Standoff Raman Detection of Extra Virgin Olive Oil Adulterated with Canola Oil and Grapeseed Oil. Applied Spectroscopy, 71, 1340-1347. https://doi.org/10.1177/0003702816681796
[7]
Sadate, S., Farley, C., Kassu, A. and Sharma, A. (2015) Standoff Raman Spectroscopy of Explosive Nitrates Using 785nm Laser. American Journal of Remote Sensing, 3, 1-5. https://doi.org/10.11648/j.ajrs.20150301.11
[8]
Vankeirsbilck, T., Vercauteren, A., Baeyens, W. and Van der Weken, G. (2002) Applications of Raman Spectroscopy in Pharmaceutical Analysis. TrAC Trends in Analytical Chemistry, 21, 869-877. https://doi.org/10.1016/S0165-9936(02)01208-6
[9]
McCreery, R.L., Horn, A.J., Spencer, J. and Jefferson, E. (1998) Noninvasive Identification of Materials Inside USP Vials with Raman Spectroscopy and a Raman Spectral Library. Journal of Pharmaceutical Sciences, 87, 1-8. https://doi.org/10.1021/js970330q
[10]
Mansouri, M.A., Sacré, P.Y., Coïc, L., Bleye, C.D., Dumont, E., Bouklouze, A., Hubert, P., Marini, R.D. and Ziemons, E. (2020) Quantitation of Active Pharmaceutical Ingredient through the Packaging Using Raman Handheld Spectrophotometers: A Comparison Study. Talanta, 207, Article ID: 120306. https://doi.org/10.1016/j.talanta.2019.120306
[11]
Moynihan, H.A. and O’Hare, I.P. (2002) Spectroscopic Characterization of the Monoclinic and Orthorhombic Forms of Paracetamol. International Journal of Pharmaceutics, 247, 179-185. https://doi.org/10.1016/S0378-5173(02)00420-9
[12]
Roggo, Y., Degardin, K. and Margot, P. (2010) Identification of Pharmaceutical Tablets by Raman Spectroscopy and Chemometrics. Talanta, 81, 988-995. https://doi.org/10.1016/j.talanta.2010.01.046
[13]
Uchida, H., Eguchi, K. and Otsuka, M. (2012) Effect of Laser Irradiation on the Stability of a Photo-sensitive Active Pharmaceutical Ingredient by Raman Microscopy. Journal of Pharmaceutical and Biomedical Analysis, 70, 259-264. https://doi.org/10.1016/j.jpba.2012.07.007
[14]
Kakio, T., Yoshida, N., Macha, S., Moriguchi, K., Hiroshima, T., Ikeda, Y., Tsuboi, H. and Kimura, K. (2017) Classification and Visualization of Physical and Chemical Properties of Falsified Medicines with Handheld Raman Spectroscopy and X-Ray Computed Tomography. The American Journal of Tropical Medicine and Hygiene, 97, 684-689. https://doi.org/10.4269/ajtmh.16-0971
[15]
Khandasammy, S.R., Fikiet, M.A., Mistek, E., Ahmed, Y., Halámková, L., Bueno, J. and Lednev, I.K. (2018) Bloodstains, Paintings, and Drugs: Raman Spectroscopy Applications in Forensic Science. Forensic Chemistry, 8, 111-133. https://doi.org/10.1016/j.forc.2018.02.002
[16]
Kim, M., Chung, H., Woo, Y. and Kemper, M.S. (2007) A New Non-Invasive, Quantitative Raman Technique for the Determination of an Active Ingredient in Pharmaceutical Liquids by Direct Measurement through a Plastic Bottle. Analytica Chimica Acta, 587, 200-207. https://doi.org/10.1016/j.aca.2007.01.062
[17]
Shende, C., Smith, W., Brouillette, C. and Farquharson, S. (2014) Drug Stability Analysis by Raman Spectroscopy. Pharmaceutics, 6, 651-662. https://doi.org/10.3390/pharmaceutics6040651
[18]
Crowell, E.L., Dreger, Z.A. and Gupta, Y.M. (2015) High-Pressure Polymorphism of Acetylsalicylic Acid (Aspirin): Raman Spectroscopy. Journal of Molecular Structure, 1082, 29-37. https://doi.org/10.1016/j.molstruc.2014.10.079
[19]
Amin, M.O., Al-Hetlani, E. and Lednev, I.K. (2022) Detection and Identification of Drug Traces in Latent Fingermarks Using Raman Spectroscopy. Scientific Reports, 12, Article No. 3136. https://doi.org/10.1038/s41598-022-07168-6
[20]
Zhao, X., Wang, N., Zhu, M., Qiu, X., Sun, S., Liu, Y., Zhao, T., Yao, J. and Shan, G. (2022) Application of Transmission Raman Spectroscopy in Combination with Partial Least-Squares (PLS) for the Fast Quantification of Paracetamol. Molecules, 27, Article No. 1707. https://doi.org/10.3390/molecules27051707
[21]
Castro-Suarez, J.R., Vásquez-Osorio, M., Hernandez-Rivera, S.P. and Pájaro-Payares, A.A. (2019) Vibrational Analysis of Acetaminophen from Commercial Tablets. IOP Conference Series: Materials Science and Engineering, 519, Article ID: 012006. https://doi.org/10.1088/1757-899X/519/1/012006
[22]
Tondepu, C., Toth, R., Navin, C.V., Lawson, L.S. and Rodriguez, J.D. (2017) Screening of Unapproved Drugs Using Portable Raman Spectroscopy. Analytica Chimica Acta, 973, 75-81. https://doi.org/10.1016/j.aca.2017.04.016
[23]
Zhou, Z.Z. and Jiang, C.J. (2021) Effect of Polyethylene Glycol on Crystallization Behavior of Acetaminophen. Open Access Library Journal, 8, e7932. https://doi.org/10.4236/oalib.1107932
[24]
Spectral Database for Organic Compounds (SDBS); Raman Spectrum, SDBS No.: 3290, CAS Registry No.: 103-90-2. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/landingpage?sdbsno=3290
National Institute of Medicine (NIH), National Library of Medicine. https://dailymed.nlm.nih.gov/dailymed/fda/fdaDrugXsl.cfm?setid=35005045-57b2-4ffe-ab70-22d570c1b161&type=display