|
基于MIKE21数值模拟的滆湖换水能力评估分析研究
|
Abstract:
湖泊换水能力直接影响着污染物迁移和水体自净能力,为探究不同引水流量入湖对滆湖换水能力的影响,文中使用MIKE21建立了滆湖水动力水质模型,模拟并对比分析多种工况及工况组合对湖区整体和局部的水体交换能力的影响;提出了使用水体更新时间和水体交换率两个指标,定量分析交叉验证水体交换能力。结果表明:引水流量为100、150、200、250 m3/s时整个湖泊水体交换率到达80%以上分别需要60 d、45 d、32 d、30 d。本文的网格划分方案为湖泊水动力水质模型建模提供了新思路,换水能力两个指标能够从时间和空间上综合全面的评估湖泊换水能力,研究成果可为滆湖水质改善工程提供重要科学参考。
The water exchange capacity of lakes directly affects the migration of pollutants and the self-purification capacity of water bodies. To explore the influence of different water diversion flows on the water exchange capacity of the lake, MIKE21 was used to establish a hydrodynamic water quality model of the lake, and the influence of various combinations of working conditions on the overall and local water exchange ca-pacity of the lake area was simulated and compared. The quantitative analysis of water renewal time and water exchange rate was proposed to cross-verify the water exchange capacity. Considering the invest-ment amount and effect, the results show that when the water diversion flow is 100, 150, 200 and 250 m3/s, the water exchange rate reaches over 80% of the whole lake needs 60 d, 45 d, 32 d and 30 d, respec-tively. The meshing scheme provides a new idea for the modeling of lake hydrodynamic water quality model, and the dual indicators of water exchange capacity can comprehensively evaluate the lake water change capacity both from time and space, which can provide an important scientific reference for the wa-ter quality improvement project of Gehu Lake.
[1] | 杨桂山, 马荣华, 张路, 等. 中国湖泊现状及面临的重大问题与保护策略[J]. 湖泊科学, 2010, 22(6): 799-810.
YANG Guishan, MA Ronghua, ZHANG Lu, et al. Current status of lakes in China, major problems and protection strategies. Lake Science, 2010, 22(6): 799-810. (in Chinese) |
[2] | 王健, 徐望朋, 马方凯, 等. 城市湖泊治理思考与建议[J]. 人民长江, 2022, 53(2): 41-47.
WANG Jian, XU Wangpeng, MA Fangkai, et al. Thoughts and suggestions on urban lake governance. People’s Yangtze River, 2022, 53(2): 41-47. (in Chinese) |
[3] | ZHANG, P., LI, L., WANG, Y., et al. Influence of riverbed incision and hydrological evolution on water quality and water age based on numerical simulation: A case study of the Minjiang Estuary. International Journal of Environmental Research and Public Health, 2021, 18(11): 6138-6147. https://doi.org/10.3390/ijerph18116138 |
[4] | 王平, 孙家文, 董祥科, 等. 生态修复后普兰店湾水体交换数值研究[J]. 海洋环境科学, 2021, 40(6): 937-946.
WANG Ping, SUN Jiawen, DONG Xiangke, et al. Numerical study on water exchange in Pulandian Bay after ecological restora-tion. Marine Environmental Science, 2021, 40(6): 937-946. (in Chinese) |
[5] | 魏皓, 田恬, 周锋, 等. 渤海水交换的数值研究——水质模型对半交换时间的模拟[J]. 青岛海洋大学学报(自然科学版), 2002(4): 519-525.
WEI Hao, TIAN Tian, ZHOU Feng, et al. Numerical study on the exchange of sea water in Bohai Sea—Simulation of half ex-change time by water quality model. Journal of Qingdao Ocean University (Natural Science Edition), 2002(4): 519-525. (in Chi-nese) |
[6] | 黄春琳, 李熙, 孙永远. 太湖水龄分布特征及“引江济太”工程对其的影响? [J]. 湖泊科学, 2017, 29(1): 22-31.
HUANG Chunlin, LI Xi and SUN Yongyuan. Characteristics of water age distribution in Taihu Lake and the impact of the “Jiangjiang to Taitai” project? Lake Science, 2017, 29(1): 22-31. (in Chinese) |
[7] | 黄爱平, 刘晓波, 彭文启, 等. 鄱阳湖水龄时空特征和影响因素分析[J]. 水利学报, 2021, 52(9): 1082-1090.
HUANG Aiping, LIU Xiaobo, PENG Wenqi, et al. Analysis of spatiotemporal characteristics and influencing factors of water age in Poyang Lake. Journal of Hydraulic Engineering, 2021, 52(9): 1082-1090. (in Chinese) |
[8] | 唐继张, 周维博, 安宝军, 等. 基于MIKE21的西安昆明池(试验段)换水能力特征研究[J]. 水资源与水工程学报, 2020, 31(1): 58-63.
TANG Jizhang, ZHOU Weibo, AN Baojun, et al. Research on the characteristics of water exchange capacity of Xi’an Kunming pond (test section) based on MIKE21. Chinese Journal of Water Resources and Water Engineering, 2020, 31(1): 58-63. (in Chi-nese) |
[9] | 张少雄, 李昊. 宽浅型水库水体更新时间数值模拟[J]. 南水北调与水利科技, 2014, 12(1): 78-81.
ZHANG Shaoxiong, LI Hao. Numerical simulation of water renewal time in wide and shallow reservoirs. South-to-North Water Diversion and Water Conservancy Science and Technology, 2014, 12(1): 78-81. (in Chinese) |
[10] | AHN, J. M., LEE, K. and LYU, S. Effect of changes in watershed runoff characteristics on salinity intrusion in Estuary using EFDC. KSCE Journal of Civil Engineering, 2020, 24(1): 87-98. https://doi.org/10.1007/s12205-020-1306-5 |
[11] | MENDES, J., RUELA, R., PICADO, A., et al. Modeling dynamic processes of Mondego Estuary and Bidos Lagoon using Delft3D. Journal of Marine Science and En-gineering, 2021, 9(1): 91-113. https://doi.org/10.3390/jmse9010091 |
[12] | 程文辉, 王船海, 朱琰. 太湖流域模型[M]. 南京: 河海大学出版社, 2006.
CHENG Wenhui, WANG Chuanhai and ZHU Yan. The Taihu Lake basin model. Nanjing: Hohai University Press, 2006. (in Chinese) |
[13] | 钱文瀚, 高月香, 张毅敏, 等. 基于多元统计分析的滆湖水质时空变化特征及原因解析[J]. 水利水电技术, 2021, 52(1): 116-128.
QIAN Wenhan, GAO Yuexiang, ZHANG Yimin, et al. Spatial and temporal variation characteristics and causes of water quality in Gehu Lake based on multivariate statistical analysis. Water Resources and Hydropower Technology, 2021, 52(1): 116-128. (in Chinese) |
[14] | 顾谢军, 张小琼, 徐东炯, 等. 洮滆水系湖库富营养化生态风险的特点与比较[J]. 环境监控与预警, 2011, 3(3): 13-17.
GU Xiejun, ZHANG Xiaoqiong, XU Dongjiong, et al. Characteristics and comparison of ecological risks of eutrophication of lakes and reservoirs in Taoge water system. Environmental Monitoring and Early Warning, 2011, 3(3): 13-17. (in Chinese) |
[15] | 左庆宁, 林大超, 邱林, 等. 基于MIKE21的滨海核设施液态流出物稀释扩散规律及排放优化的模拟研究[J]. 同位素, 2022, 35(2): 75-83.
ZUO Qingning, LIN Dachao, QIU Lin, et al. Simulation study on dilution and diffusion of liquid effluent from coastal nuclear fa-cilities and emission optimization based on MIKE21. Isotope, 2022, 35(2): 75-83. (in Chinese) |
[16] | SHARBATI, S. Two di-mensional simulation of flow pattern in Gorgan bay by using Mike21 software. Journal of Hydrodynamics, 2011, 23(5): 637-642. https://doi.org/10.1016/S1001-6058(10)60159-X |
[17] | 许莉萍, 高学平, 张晨, 等. 基于数值方法的城市人工湖泊水体交换研究[J]. 水利水电技术, 2018, 49(6): 94-100.
XU Liping, GAO Xueping, ZHANG Chen, et al. Research on water exchange in urban artificial lakes based on numerical meth-ods. Water Resources and Hydropower Technology, 2018, 49(6): 94-100. (in Chinese) |