|
基于高频数据的PGARCH模型的拟极大指数似然估计
|
Abstract:
作为GARCH族模型的重要拓展模型之一,PGARCH模型的估计往往采用基于日度数据的拟极大似然估计方法。为了探究高频信息对PGARCH模型估计的影响,基于Visser (2011)的研究,本文使用波动率代表模型来整合高频数据,并使用拟极大指数似然估计方法(QMELE)对PGARCH模型进行估计,同时探究了拟极大指数似然估计的渐近性质和模型估计效率的评判标准。模拟研究和实证分析证实,基于高频数据的拟极大指数似然估计有效地提升了PGARCH模型的参数估计精度,这说明基于高频数据的拟极大似然指数估计具有一定的应用价值。
As one of the important extended models of the GARCH family model, it is more common to use quasi maximum likelihood estimator to fit PGARCH model with daily data. Referring to Visser (2011), this article applies volatility representative models to integrate high-frequency data, and then uses the quasi maximum exponential likelihood estimator (QMELE) to fit the PGARCH model, so that we can explore the impact of high-frequency information on the estimation of the PGARCH model. Meanwhile, we establish the asymptotic properties of QMELE and the evaluation criteria for model estimation efficiency. Simulation research and empirical analysis have confirmed that QMELE with high-frequency data effectively improves the parameter estimation accuracy of the PGARCH model, which indicates that the QMELE based on high-frequency data has a certain application value.
[1] | Engle, R.F. (1982) Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50, 987-1007. https://doi.org/10.2307/1912773 |
[2] | Bollerslev, T. (1986) Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31, 307-327.
https://doi.org/10.1016/0304-4076(86)90063-1 |
[3] | Higgins, M.L. and Bera, A.K. (1992) A Class of Nonlinear ARCH Models. International Economic Review, 33, 137-158.
https://doi.org/10.2307/2526988 |
[4] | Ding, Z., Granger Clive, W.J. and Engle, R.F. (1993) A Long Memory Property of Stock Market Returns and a New Model. Journal of Empirical Finance, 1, 83-106. https://doi.org/10.1016/0927-5398(93)90006-D |
[5] | Diebolt, J. and Guégan, D. (1994) Probabilistic Properties of the Béta-ARCH Model. Post-Print, 4, 71-87. |
[6] | Hwang, S.Y. and Kim, T.Y. (2004) Power Transformation and Threshold Modeling for ARCH Innovations with Applications to Tests for ARCH Structure. Stochastic Processes and Their Applications, 110, 295-314.
https://doi.org/10.1016/j.spa.2003.11.001 |
[7] | Pan, J., Wang, H. and Tong, H. (2007) Estimation and Tests for Power-Transformed and Threshold GARCH Models. Journal of Econometrics, 142, 352-378. https://doi.org/10.1016/j.jeconom.2007.06.004 |
[8] | An, H.Z., Chen, M. and Huang, F.C. (1997) The Geometric Ergodicity and Existence of Moments for a Class of Non-Linear Time Series Models. Statistics & Probability Letters, 31, 213-224.
https://doi.org/10.1016/S0167-7152(96)00033-8 |
[9] | Visser, M.P. (2011) GARCH Parameter Estimation Using High-Frequency Data. Journal of Financial Econometrics, 9, 162-197. https://doi.org/10.1093/jjfinec/nbq017 |
[10] | 黄金山. 基于高频数据的GARCH模型的参数估计[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2013. |
[11] | Huang, J., Wu, W., Chen, Z. and Zhou, J.-J. (2015) Robust M-Estimate of GJR Model with High Frequency Data. Acta Mathematicae Applicatae Sinica, 31, 591-606. https://doi.org/10.1007/s10255-015-0488-y |
[12] | Fan, P.-Y., Wu, S.-X., Zhao, Z.-L. and Chen, M. (2017) M-Estimation for Periodic GARCH Model with High-Frequency Data. Acta Mathematicae Applicatae Sinica, English Series, 33, 717-730.
https://doi.org/10.1007/s10255-017-0694-x |
[13] | 吴思鑫, 冯牧, 张虎, 陈敏. 基于高频数据的非平稳GARCH(1,1)模型的拟极大指数似然估计[J]. 中国科学: 数学, 2018, 48(3): 443-456. |
[14] | 张兴发, 李元. 一类GARCH-M模型的拟极大指数似然估计[J]. 应用数学学报, 2016, 36(3): 321-333. |
[15] | 张童巍. 若干广义自回归条件异方差模型的统计推断[D]: [博士学位论文]. 长春: 吉林大学, 2022. |