全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Tranilast在角膜碱烧伤治疗中的潜在作用
Potential Role of Tranilast in the Treatment of Corneal Alkali Burns

DOI: 10.12677/HJO.2023.123014, PP. 101-107

Keywords: Tranilast,角膜碱烧伤,胶原降解,炎症
Tranilast
, Corneal Alkali Burn, Collagen Degradation, Inflammation

Full-Text   Cite this paper   Add to My Lib

Abstract:

角膜碱烧伤是临床上常见的眼外伤类型,致盲率极高,其发生机制涉及角膜基质细胞、炎性细胞浸润、角膜胶原纤维降解、各种细胞因子及其相互作用。积累的证据表明,Tranilast具有广泛的药理特性,如抗炎、减轻纤维化和免疫调节作用。本文综述了Tranilast在免疫性和炎症性疾病中的新发现,并分析了Tranilast在角膜碱烧伤治疗中的应用前景。
Corneal alkali burn is a common type of ocular trauma with a very high rate of blindness. Its occurrence mechanisms involve corneal stromal cells, inflammatory cell infiltration, corneal collagen fiber degradation, various cytokines and their interactions. Accumulating evidence suggests that Tranilast has a broad range of pharmacological properties, such as efficacy in anti-inflammatory, alleviating fibrosis and immunomodulatory effects. This review summarizes the new findings of Tranilast in immune and inflammatory diseases and analyzes the perspective application of Tranilast in the treatment of corneal alkali burns.

References

[1]  Zheng, S., Xie, H.P. and Xiong, H.Y. (2006) Clinical Analysis of 135 Patients with Severe Eye Burn. Chinese Journal of Burns, 22, 50-52.
[2]  Nagano, T., Hao, J.L., Nakamura, M., et al. (2001) Stimulatory Effect of Pseudomonal Elastase on Collagen Degradation by Cultured Keratocytes. Investigative Ophthalmology & Visual Science, 42, 1247-1253.
[3]  Koda, A., Nagai, H., Watanabe, S., et al. (1976) Inhibition of Hypersensitivity Reactions by a New Drug, N (3’, 4’-Dimethoxycinnamoyl) Anthranilic Acid (N-5’). The Journal of Allergy and Clinical Immunology, 57, 396-407.
https://doi.org/10.1016/0091-6749(76)90054-3
[4]  Ayaki, M., Iwasawa, A., Yaguchi, S. and Koide, R. (2010) Preserved and Unpreserved 12 Anti-Allergic Ophthalmic Solutions and Ocular Surface Toxicity: In Vitro Assessment in Four Cultured Corneal and Conjunctival Epithelial Cell Lines. Biocontrol Science, 15, 143-148.
https://doi.org/10.4265/bio.15.143
[5]  Shishibori, T., Oyama, Y., Matsushita, O., et al. (1999) Three Distinct Anti-Allergic Drugs, Amlexanox, Cromolyn and Tranilast, Bind to S100A12 and S100A13 of the S100 Protein Family. Biochemical Journal, 338, 583-589.
https://doi.org/10.1042/bj3380583
[6]  Murphy, G., Cockett, M.I., Stephens, P.E., Smith, B.J. and Docherty, A.J.P. (1987) Stromelysin Is an Activator of Procollagenase. A Study with Natural and Recombinant Enzymes. Biochemical Journal, 248, 265-268.
https://doi.org/10.1042/bj2480265
[7]  Kim, H.S., Shang, T., Chen, Z., Pflugfelder, S.C. and Li, D.Q. (2004) TGF-β1 Stimulates Production of Gelatinase (MMP-9), Collagenases (MMP-1, -13) and Stromelysins (MMP-3, -10, -11) by Human Corneal Epithelial Cells. Experimental Eye Research, 79, 263-274.
https://doi.org/10.1016/j.exer.2004.05.003
[8]  Fini, M.E., Girard, M.T. and Matsubara, M. (1992) Collagenolytic/Gelatinolytic Enzymes in Corneal Wound Healing. Acta Ophthalmologica, 70, 26-33.
https://doi.org/10.1111/j.1755-3768.1992.tb02165.x
[9]  Paterson, C.A., Wells, J.G., Koklitis, P.A., et al. (1994) Recombinant Tissue Inhibitor of Metalloproteinases Type 1 Suppresses Alkali-Burn-Induced Corneal Ulceration in Rabbits. Investigative Ophthalmology & Visual Science, 35, 677-684.
[10]  Zhang, H., Li, C. and Baciu, P.C. (2002) Expression of Integrins and MMPs during Alkaline-Burn-Induced Corneal Angiogenesis. Investigative Ophthalmology & Visual Science, 43, 955-962.
[11]  Shimizu, T., Kanai, K., Asano, K., Hisamitsu, T. and Suzaki, H. (2005) Suppression of Matrix Metalloproteinase Production in Nasal Fibroblasts by Tranilast, an Antiallergic Agent, in vitro. Mediators of Inflammation, 2005, Article ID: 819627.
https://doi.org/10.1155/MI.2005.150
[12]  Shimizu, T., Kanai, K., Kyo, Y., et al. (2006) Effect of Tranilast on Matrix Metalloproteinase Production from Neutrophils in-vitro. Journal of Pharmacy and Pharmacology, 58, 91-99.
https://doi.org/10.1211/jpp.58.1.0011
[13]  Liu, Y., Kan, M., Li, A., et al. (2016) Inhibitory Effects of Tranilast on Cytokine, Chemokine, Adhesion Molecule, and Matrix Metalloproteinase Expression in Human Corneal Fibroblasts Exposed to Poly (I:C). Current Eye Research, 41, 1400-1407.
https://doi.org/10.3109/02713683.2015.1127389
[14]  Liu, Y., Zhao, X.J., Zheng, X.S., et al. (2018) Tranilast Inhibits TGF-β-Induced Collagen Gel Contraction Mediated by Human Corneal Fibroblasts. International Journal of Ophthalmology, 11, 1247-1252.
[15]  Liu, Y., Xu, D., Li, J. and Liu, Y. (2014) Inhibition of Interleukin-1β-Induced Matrix Metalloproteinase Expression in Human Corneal Fibroblasts by Tranilast. Current Eye Research, 39, 885-893.
https://doi.org/10.3109/02713683.2014.884598
[16]  Yashiro, M., Murahashi, K., Matsuoka, T., et al. (2003) Tranilast (N-3,4-Dimethoxycinamoyl Anthranilic Acid): A Novel Inhibitor of Invasion-Stimulating Interaction between Gastric Cancer Cells and Orthotopic Fibroblasts. Anticancer Research, 23, 3899-3904.
[17]  Darakhshan, S., Bidmeshkipour, A., Khazaei, M., et al. (2013) Synergistic Effects of Tamoxifen and Tranilast on VEGF and MMP-9 Regulation in Cultured Human Breast Cancer Cells. Asian Pacific Journal of Cancer Prevention, 14, 6869-6874.
https://doi.org/10.7314/APJCP.2013.14.11.6869
[18]  Kaneda, M., Obara, H., Suzuki, K., et al. (2017) Evaluation of Suppressive Effects of Tranilast on the Invasion/Metastasis Mechanism in a Murine Pancreatic Cancer Cell Line. Pancreas, 46, 567-574.
https://doi.org/10.1097/MPA.0000000000000779
[19]  Pfister, R.R., Haddox, J.L., Sommers, C.I. and Lam, K.W. (1995) Identification and Synthesis of Chemotactic Tripeptides from Alkali-Degraded Whole Cornea. A Study of N-Acetyl-Proline-Glycine-Proline and N-Methyl-Proline- Glycine-Proline. Investigative Ophthalmology & Visual Science, 36, 1306-1316.
[20]  Pfister, R.R., Haddox, J.L., Dodson, R.W. and Harkins, L.E. (1987) Alkali-Burned Collagen Produces a Locomotory and Metabolic Stimulant to Neutrophils. Investigative Ophthalmology & Visual Science, 28, 295-304.
[21]  Planck, S.R., Rich, L.F., Ansel, J.C., Huang, X.N. and Rosenbaum, J.T. (1997) Trauma and Alkali Burns Induce Distinct Patterns of Cytokine Gene Expression in the Rat Cornea. Ocular Immunology and Inflammation, 5, 95-100.
https://doi.org/10.3109/09273949709085057
[22]  Sotozono, C., He, J., Matsumoto, Y., et al. (1997) Cytokine Expression in the Alkali-Burned Cornea. Current Eye Research, 16, 670-676.
https://doi.org/10.1076/ceyr.16.7.670.5057
[23]  Den, S., Sotozono, C., Kinoshita, S. and Ikeda, T. (2004) Efficacy of Early Systemic Betamethasone or Cyclosporin A after Corneal Alkali Injury via Inflammatory Cytokine Reduction. Acta Ophthalmologica Scandinavica, 82, 195-199.
https://doi.org/10.1111/j.1600-0420.2004.00229.x
[24]  Cubitt, C.L., Tang, Q., Monteiro, C.A., et al. (1993) IL-8 Gene Expression in Cultures of Human Corneal Epithelial Cells and Keratocytes. Investigative Ophthalmology & Visual Science, 34, 3199-3206.
[25]  Cubitt, C.L., Lausch, R.N. and Oakes, J.E. (1995) Differences in Interleukin-6 Gene Expression between Cultured Human Corneal Epithelial Cells and Keratocytes. Investigative Ophthalmology & Visual Science, 36, 330-336.
[26]  Sakamoto, S., Inada, K., Chiba, K., et al. (1991) Production of IL-6 and IL-1 α by Human Corneal Epithelial Cells. Nippon Ganka Gakkai Zasshi, 95, 728-732.
[27]  Lu, Y., Fukuda, K., Liu, Y., Kumagai, N. and Nishida, T. (2004) Dexamethasone Inhibition of IL-1-Induced Collagen Degradation by Corneal Fibroblasts in Three-Dimensional Culture. Investigative Ophthalmology & Visual Science, 45, 2998-3004.
https://doi.org/10.1167/iovs.04-0051
[28]  Kumagai, N., Fukuda, K., Fujitsu, Y., et al. (2005) Lipopolysaccharide-Induced Expression of Intercellular Adhesion Molecule-1 and Chemokines in Cultured Human Corneal Fibroblasts. Investigative Ophthalmology & Visual Science, 46, 114-120.
https://doi.org/10.1167/iovs.04-0922
[29]  Li, D.Q., Zhou, N., Zhang, L., et al. (2010) Suppressive Effects of Azithromycin on Zymosan-Induced Production of Proinflammatory Mediators by Human Corneal Epithelial Cells. Investigative Ophthalmology & Visual Science, 51, 5623-5629.
https://doi.org/10.1167/iovs.09-4992
[30]  Chikaraishi, A., Hirahashi, J., Takase, O., et al. (2001) Tranilast Inhibits Interleukin-1β-Induced Monocyte Chemoattractant Protein-1 Expression in Rat Mesangial Cells. European Journal of Pharmacology, 427, 151-158.
https://doi.org/10.1016/S0014-2999(01)01215-8
[31]  Inoue, H., Ohshima, H., Kono, H., et al. (1997) Suppressive Effects of Tranilast on the Expression of Inducible Cyclooxygenase (COX2) in Interleukin-1β-Stimulated Fibroblasts. Biochemical Pharmacology, 53, 1941-1944.
https://doi.org/10.1016/S0006-2952(97)00187-1
[32]  Adachi, T., Fukuda, K., Kondo, Y. and Nishida, T. (2010) Inhibition by Tranilast of the Cytokine-Induced Expression of Chemokines and the Adhesion Molecule VCAM-1 in Human Corneal Fibroblasts. Investigative Ophthalmology & Visual Science, 51, 3954-3960.
https://doi.org/10.1167/iovs.09-4161
[33]  See, F., Watanabe, M., Kompa, A.R., et al. (2013) Early and Delayed Tranilast Treatment Reduces Pathological Fibrosis following Myocardial Infarction. Heart, Lung and Circulation, 22, 122-132.
https://doi.org/10.1016/j.hlc.2012.08.054
[34]  Pae, H.O., Jeong, S.O., Koo, B.S., et al. (2008) Tranilast, an Orally Active Anti-Allergic Drug, Up-Regulates the Anti-Inflammatory Heme Oxygenase-1 Expression But Down-Regulates the Pro-Inflammatory Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Expression in RAW264.7 Macrophages. Biochemical and Biophysical Research Communications, 371, 361-365.
https://doi.org/10.1016/j.bbrc.2008.04.054
[35]  Morita, H., Kihara, T., Miyamoto, M., Yamagata, M. and Sagami, S. (1990) Interleukin-2 Production of T Cells in Atopic Dermatitis. The Journal of Dermatology, 17, 375-379.
https://doi.org/10.1111/j.1346-8138.1990.tb01659.x
[36]  Abdelaziz, R.R., Elkashef, W.F. and Said, E. (2015) Tranilast Reduces Serum IL-6 and IL-13 and Protects against Thioacetamide-Induced Acute Liver Injury and Hepatic Encephalopathy. Environmental Toxicology and Pharmacology, 40, 259-267.
https://doi.org/10.1016/j.etap.2015.06.019
[37]  Cui, P., Tang, Z., Zhan, Q., et al. (2022) In vitro and vivo Study of Tranilast Protects from Acute Respiratory Distress Syndrome and Early Pulmonary Fibrosis Induced by Smoke Inhalation. Burns, 48, 880-895.
https://doi.org/10.1016/j.burns.2022.03.010
[38]  Zhuang, T., Li, S., Yi, X., et al. (2020) Tranilast Directly Targets NLRP3 to Protect Melanocytes from Keratinocyte-Derived IL-1β under Oxidative Stress. Frontiers in Cell and Developmental Biology, 8, Article 588.
https://doi.org/10.3389/fcell.2020.00588
[39]  Chu, H.Q., Li, J., Huang, H.P., et al. (2016) Protective Effects of Tranilast on Oxazolone-Induced Rat Colitis through a Mast Cell-Dependent Pathway. Digestive and Liver Disease, 48, 162-171.
https://doi.org/10.1016/j.dld.2015.09.002
[40]  Inglis, J.J., Criado, G., Andrew, M., Williams, R.O. and Selley, M.L. (2007) The Anti-Allergic Drug, N-(3’, 4’-Dimethoxycinnamonyl) Anthranilic Acid, Exhibits Potent Anti-Inflammatory and Analgesic Properties in Arthritis. Rheumatology, 46, 1428-1432.
https://doi.org/10.1093/rheumatology/kem160
[41]  Sun, Q.F., Ding, J.G., Sheng, J.F., et al. (2011) Novel Action of 3,4-DAA Ameliorating Acute Liver Allograft Injury. Cell Biochemistry and Function, 29, 673-678.
https://doi.org/10.1002/cbf.1805

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133