全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Elaboration of Ceramic Pot Filter from Kaolinite (Cameroon Clay) for the Elimination of Suspended Particles from Domestic Drinking Water

DOI: 10.4236/msce.2023.118004, PP. 43-60

Keywords: Ceramic Pot Filter, Retention Rate, Flux, Defouling, Formulation, Production Cost

Full-Text   Cite this paper   Add to My Lib

Abstract:

The objective of this work was to elaborate ceramic water filters from Kaolinite (Cameroon) clay for the elimination of suspended particles from domestic drinking water. In Sub-Sahara Africa and in Cameroon in particular health issues have been linked to the consummation of domestic tap water of high turbidity values both in the rural and urban areas. In order to remedy these problems, ceramic water pot filters have been elaborated in a pilot scale unit with aim of putting in place a unit production. The chemical composition, the thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analyses of the raw materials (clay and rice husks) was determined. The crystal phases and scanning electron microscope of Wack clay was also determined. The ceramic pot filter membranes were fabricated from the formulations 70/20/10 of clay/porogen/chamotte respectively with the particle size of the raw material less than or equal to 500 μm. The formulated ceramic pot filters were then sintered at 900˚C in a furnace. These ceramic pot filters were characterized by determining their porosity, withdrawal percentages, water permeability, mechanical and chemical resistance. The study of the efficiency consisted in evaluating the retention rate and permeate flux with respect to time (days) with synthetic water suspensions of turbidity 100 NTU and particle size of 2 μm. The ceramic pot filters were made aiming at studying the efficiency after physical defouling of filters. Physical defouling consisted in brushing the inner surface of the ceramic pot filters with water and drying them at ambient temperature after being used for 11 days and reusing them under the same initial conditions. The produced ceramic pot filter had a volume of 4 L, an average porosity of 36.15%, shrinkage in mass or withdrawal percentage of 18.23%, a water permeability of 59.6 × 103 Lh2m

References

[1]  Centers for Disease Control and Prevention (2011) Best Practice Recommendations for Local Manufacturing of Ceramic Pot Filters for Household Water Treatment. The Ceramics Manufacturing Working Group, Atlanta.
[2]  World Health Organization (2012) Manganese in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality.
[3]  World Health Organization (WHO) and United Nations International Children’s Emergency Fund (UNICEF) (2008) Progrès en matière d’eau potable et assainissement: Volet spécial sur l’assainissement; Programme commun de suivi de l’approvisionnement en eau et de l’assainissement de l’Organisation mondiale de la Santé et du Fonds des Nations Unies pour l’enfance UNICEF, New York et OMS, Genève.
[4]  Johnson, S.M. (2007) Health and Water Quality Monitoring of Pure Home Water’s Ceramic Filter Dissemination in the Northern Region of Ghana. Master’s Thesis, Massachusetts Institute of Technology, Cambridge.
[5]  Yanu, C.A., Sieliechi, J.M. and Ngassoum, M.B. (2020) Optimization of Ceramic Paste Viscosity Use for the Elaboration of Tubular Membrane Support by Extrusion and Its Application. Journal of Materials Science and Chemical Engineering, 8, 1-22.
https://doi.org/10.4236/msce.2020.83001
[6]  Djou, B. (2018) Elaboration et caractérisation des filtres céramiques tubulaires: Application à la filtration tangentielle des eaux de consummation. Ph.D. Thesis, Université de Ngaoundéré, Ngaoundéré.
[7]  Brown, J. and Sobsey, M. (2011) Evaluating Household Water Treatment Options: Health Based Targets and Microbiological Performance Specifications. World Health Organization, Genève.
[8]  Belibi Belibi, P., Nguemtchouin, M.M.G., Rivallin, M., Ndi Nsami, J., Sieliechi, J., Cerneaux, S., Ngassoum, M.B. and Cretin, M. (2015) Microfiltration Ceramic Membranes from Local Cameroonian Clay Applicable to Water Treatment. Ceramics International, 41, 2752-2759.
https://doi.org/10.1016/j.ceramint.2014.10.090
[9]  Nguiamba, N., Yanu, C.A., Belibi Belibi, P.D., Sieliechi, J.M. and Ngassoum, M.B. (2021) Identification of an Appropriate Formulation for Domestic Water Ceramic Filters from Soukamna Clay (Cameroon). Journal of Metallic Material Research, 4, 12-18.
https://doi.org/10.30564/jmmr.v4i1.3462
[10]  Fabrice, N.W. (2020) Elaboration des membranes minérales multicouches de microfiltration contenant des nanoparticules d’argent pour le traitement de l’eau de consummation. Master’s Thesis, Université de Ngaoundéré, Ngaoundéré.
[11]  Karimizade, A., Takallu, S. and Mirzaei, E. (2018) Evaluating the Effect of pH on Mechanical Strength and Cell Compatibility of Nanostructured Collagen Hydrogel by the Plastic Compression Method. Nanomedicine Journal, 5, 180-185.
[12]  Adjia, Z.H. (2012) Epuration des métaux lourds des eaux usées par les argiles alluviales de l’‟Extrême Nord Cameroun. Master’s Thesis, Université de Ngaoundéré, Ngaoundéré.
[13]  El Yakoubi, N., Aberkan, M. and Ouadia, M. (2006) Potentialité d’utilisation d’argiles marocaines de Jbel Kharrou dans l’industrie céramique. Comptes Rendus Geoscience, 338, 693-702.
https://doi.org/10.1016/j.crte.2006.03.017
[14]  Abubakar, I., Birmin Yauri, U.A., Faruq, U.Z., Noma, S.S. and Sharif, N. (2014) Characterization of Dabagi Clay Deposit for Its Ceramics Potential. African Journal of Environmental Science and Technology, 8, 455-459.
https://doi.org/10.5897/AJEST2014.1741
[15]  Kamseu, E., Leonelli, C., Boccaccini, D.N., Veronesi, P., Miselli, P., Pellacani, G. and Chinje Melo, U. (2007) Characterisation of Porcelain Compositions Using Two China Clays from Cameroon. Ceramics International, 33, 851-857.
https://doi.org/10.1016/j.ceramint.2006.01.025
[16]  Ali, M.S., Ariff, A.H.M., Jaafar, C.N.A., Tahir, S.M., Mazlan, N., Maori, K.A. and Naser, H. (2017) Factors Affecting the Porosity and Mechanical Properties of Porous Ceramic Composite Materials. Encyclopedia of Materials: Composites, 2, 66-115.
https://doi.org/10.1016/B978-0-12-803581-8.10131-6
[17]  Majhi, A., Monash, P. and Pugazhenthi, G. (2009) Fabrication and Characterization of γ-Al2O3-Clay Composite Ultrafiltration Membrane for the Separation of Electrolytes from Its Aqueous Solution. Journal of Membrane Science, 340,181-191.
https://doi.org/10.1016/j.memsci.2009.05.030
[18]  Esharghawi, A., Penot, C. and Nardou, F. (2009) Contribution to Porous Mullite Synthesis from Clays by Adding Al and Mg Powders. Journal of the European Ceramic Society, 29, 31-38.
https://doi.org/10.1016/j.jeurceramsoc.2008.05.036
[19]  Hettiarachchi, P., Motha, J.T.S. and Pitawala, H.M.T.G.A. (2010) Identification of an Appropriate Body Composition for Red Clay Products. Ceramica, 56, 285-290.
https://doi.org/10.1590/S0366-69132010000300012
[20]  Fisher, T., Hajaligol, M., Waymack, B. and Kellogg, D. (2002) Pyrolysis Behavior and Kinetic of Biomass Derived Materials. Journal of Analytical and Applied Pyrolysis, 62, 331-349.
https://doi.org/10.1016/S0165-2370(01)00129-2
[21]  Caillère, S., Henin, S. and Rautureau, M. (1982) Minéralogie des argiles: Classification et nomenclature (Tome 1 et Tome 2). Ed. Masson, Paris, pp 9, 107 et 114.
[22]  Bouchet, A. and Sammartino, S. (2002) Caractérisation minéralogique de 6 échantillons de minéraux du commerce. Rapport d’analyse ERM 02-173 AB 273.
[23]  Dong, Y., Feng, X., Dong, D., Wang, S., Yang, J., Gao, J., Liu, X. and Meng, G. (2007) Elaboration and Chemical Corrosion Resistance of Tubular Macro-Porous Cordierite Ceramic Membrane Supports. Journal of Membrane Science, 304, 65-75.
https://doi.org/10.1016/j.memsci.2007.06.058
[24]  Costa, A., Depinho, M. and Elimelech, M. (2006) Mechanisms of Colloidal Natural Organic Matter Fouling in Ultrafiltration. Journal of Membrane Science, 281, 716-725.
https://doi.org/10.1016/j.memsci.2006.04.044

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133