全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mechanical Characterization of Rhecktophyllum Camerunense (RC) Fiber Reinforced Concrete

DOI: 10.4236/msce.2023.118002, PP. 20-32

Keywords: Reinforced Concrete, RC Fiber, Mechanical Properties, Lightweight Concrete

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work presents the development and mechanical characterization of a concrete reinforced with plant fiber extracted from Rhecktophyllum Camerunense (RC), a plant found in the regions of Center and South Cameroon. A comparative study between ordinary concrete and concrete reinforced with RC fiber at different percentages (0.1%, 0.2% and 0.3%) was carried out. The mechanical characterization of the material consisted in studying the flexural, compressive and splitting tensile strength by using cylindrical specimens of dimensions 160 × 320 in accordance with standards EN 12390-3 and EN 12390-6. The study of the mechanical properties was completed by the three-point bending test using prismatic test specimens of dimension 40 × 40 × 160 made according to the EN 196 standard. It emerges from this work that the addition of RC fiber improves the mechanical properties of concrete up to 0.2% with a peak at 0.1% of fiber corresponding to respective increases of 9%, 16% and 6% of the values of mechanical resistance to compression, flexion and tension after 28 days. From 0.3% of fiber, the values of the mechanical characteristics of the composite drop to values lower than those of ordinary concrete. The density reduction rate at 28 days is about 10% compared to the mass of ordinary concrete. These results allow us to conclude that the RC fiber could be valorized for the production of lightweight concrete.

References

[1]  Gagg, C.R. (2014) Cement and Concrete as an Engineering Material: An Historic Appraisal and Case Study Analysis. Engineering Failure Analysis, 40, 114-140.
https://doi.org/10.1016/j.engfailanal.2014.02.004
[2]  Chafei, S., Gomina, M., Khadroui, F. and Boutouil, M. (2017) Dependence of the Properties of Cementitious Composites on the Nature of the Hydraulic Binder Coating the Reinforcing Flax Fibers. Journal of Mechanical and Civil Engineering, 4, 27-33.
[3]  Wei, J.Q. and Gencturk, B. (2018) Degradation of Natural Fiber in Cement Composites Containing Diatomaceous Earth. Journal of Materials in Civil Engineering, 30.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002486
[4]  Hasan, K.M.F., Horváth, P.G. and Alpár, T. (2021) Development of Lignocellulosic Fiber Reinforced Cement Composite Panels Using Semi-Dry Technology. Cellulose, 28, 3631-3645.
https://doi.org/10.1007/s10570-021-03755-4
[5]  Ardanuy, M., Claramunt, J. and Toledo Filho, R.D. (2015) Cellulosic Fiber Reinforced Cement-Based Composites: A Review of Recent Research. Construction and Building Materials, 79, 115-128.
https://doi.org/10.1016/j.conbuildmat.2015.01.035
[6]  Lilargem Rocha, D., Tambara Júnior, L.U.D., Marvila, M.T., Pereira, E.C., Souza, D. and de Azevedo, A.R.G. (2022) A Review of the Use of Natural Fibers in Cement Composites: Concepts, Applications and Brazilian History. Polymers, 14, Article 2043.
https://doi.org/10.3390/polym14102043
[7]  Prakash Chandar, S. and Sangeeth Kumar, S.K. (2022) Mechanical Properties of Fiber Reinforced Concrete-Natural Fibers: A Review. Material Today: Proceedings, 68, 2066-2071.
https://doi.org/10.1016/j.matpr.2022.08.362
[8]  Tioua, T., Kriker, A., Barluenga, G. and Palomar, I. (2017) Influence of Date Palm Fiber and Shrinkage Reducing Admixture on Self-Compacting Concrete Performance at Early Age in Hot-Dry Environment. Construction and Building Materials, 154, 721-733.
https://doi.org/10.1016/j.conbuildmat.2017.07.229
[9]  Benmansour, N., Agoudjil, B., Gherabli, A., Kareche, A. and Boudenne, A. (2014) Thermal and Mechanical Performance of Natural Mortar Reinforced with Date Palm Fibers for Use as Insulating Materials in Building. Energy and Buildings, 81, 98-104.
https://doi.org/10.1016/j.enbuild.2014.05.032
[10]  dos Santos, M.F., Thiago, F., Danilo, M. and Franco, D. (2016) Comparative Analysis of the Sisal and Piassava Fibers as Reinforcements in Lightweight Cementitious Composites with EVA Waste. Construction and Building Materials, 128, 315-323.
https://doi.org/10.1016/j.conbuildmat.2016.10.035
[11]  Cerezo, V. (2005) Propriétés mécaniques, thermiques et acoustiques d’un matériau à base de particules végétales: Approche expérimentale et modélisation théorique. Master’s Thesis, Ecole Nationale des Travaux Publics de l’Etat, Vaulx-en-Velin.
[12]  Tung, L., Khadraoui, F., Boutouil, M. and Gomina, M. (2012) Caractérisation microstructurale et mécanique d’un composite cimentaire renforcé par des fibre de lin. MATEC Web of Conferences, 2, 7.
https://doi.org/10.1051/matecconf/20120201014
[13]  Momoh, E. and Osofero, A. (2019) Behaviour of Oil Palm Broom Fibres (OPBF) Reinforced Concrete. Construction and Building Materials, 221, 745-761.
https://doi.org/10.1016/j.conbuildmat.2019.06.118
[14]  Nteppe-Nyame, C. (1981) Une nouvelle espèce pour le genre Rhecktophyllum. Adansonia, 20, 451-457.
[15]  Ntenga, R. (2007) Modélisation multi-échelles et caractérisation de l’anisotropie élastique de fibres végétales pour le renforcement de matériaux composites. Master’s Thesis, niversité Blaise Pascal—Clermont-Ferrand II; Université de Yaoundé, Yaoundé.
[16]  Betene, E. (2012) Etude des propriétés mécaniques et Thermiques du platre renforce de fibres végétales tropicales. Master’s Thesis, Université Blaise Pascal, Limagne.
[17]  AFNOR (2010) Béton—Essai pour béton durci—Essai de porosité et de masse volumique. NF P18-459.
[18]  British Standards Institution (2016) BS EN 196-1: Methods of Testing Cement. Determination of Strength. London.
[19]  Berthelot, J. (2005) Matériaux composites: Comportement et analyse des structures. 4th Edition, Lavoisier, Paris.
[20]  British Standards Institution (2010) BS EN 12390-6: Testing Hardened Concrete Part 6: Tensile Splitting Strength of Test Specimens. London.
[21]  British Standards Institution (2011) BS EN 12390-3: Testing Hardened Concrete Part 3: Compressive Strength of Test Specimens. London.
[22]  Arliguie, G. and Hornain, H. (2007) Grandeurs associées à la durabilité des bétons. Presses de l’école nationale des ponts et chaussées, Paris.
[23]  Djelal, C., Page, J., Kada, H. and Vanhove, Y. (2020) Feasibility Study of Using Poplar Wastes as Sand in Cement Mortars. Journal of Material Cycles and Waste Management, 22, 488-500.
https://doi.org/10.1007/s10163-019-00946-x
[24]  Turgut, P. and Murat Algin, H. (2007) Limestone Dust and Wood Sawdust as Brick Material. Building and Environment, 42, 3399-3403.
https://doi.org/10.1016/j.buildenv.2006.08.012
[25]  Bederina, M., Marmoret, L., Mezreb, K., Khenfer, M., Bali, A. and Quéneudec, M. (2007) Effect of the Addition of Wood Shavings on Thermal Conductivity of Sand Concretes: Experimental Study and Modelling. Construction and Building Materials, 21, 662-668.
https://doi.org/10.1016/j.conbuildmat.2005.12.008
[26]  Achour, A. (2017) Etude des performances des mortiers renforcés de fibres naturelles: Valorisation des plantes locales. Thèse de doctorat, Université Aboubakr Belkaïd-Algerie, Chetouane.
[27]  Falliano, D., Domenico, D., Ricciardi, G. and Gugliandolo, E. (2019) Compressive and flexural Strength of Fiber-Reinforced Foamed Concrete: Effect of Fiber Content, Curing Conditions and Dry Density. Construction and Building Materials, 198, 479-493.
https://doi.org/10.1016/j.conbuildmat.2018.11.197
[28]  British Standards Institution (2009) BS EN 12390-3: Testing Hardened Concrete Part 7: Density of Hardened Concrete. London.
[29]  Kriker, A., Debicki, G., Bali, A., Khenfer, M. and Chabannet, M. (2005) Mechanical Properties of Date Palm Fibres and Concrete Reinforced with Date Palm Fibers in Hot-Dry Climate. Cement & Concrete Composites, 27, 554-564.
https://doi.org/10.1016/j.cemconcomp.2004.09.015
[30]  Ismail, M. (2007) Compresssive and Tensile Strength of Natural Fibre-Reinforced Cement Base Composites. AL Rafidain Engineering Journal, 15, 42-51.
https://doi.org/10.33899/rengj.2007.44954
[31]  Djebali, S. (2013) Caractérisation des éléments de structures en béton de fibres métalliques. Thèse de doctorat, Université Mouloud Mammeri de Tizi-Ouzou, Tizi-Ouzou.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133