全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

除氯技术在水处理中的研究进展
Research Progress of Chloride Removal Technology in Water Treatment

DOI: 10.12677/HJCET.2023.135041, PP. 351-361

Keywords: 氯离子,除氯技术,水处理
Chloride Ions
, Chloride Removal Technology, Water Treatment

Full-Text   Cite this paper   Add to My Lib

Abstract:

由水体中Cl?浓度过高所引起的盐碱化问题已成为当今严重且普遍的环境问题之一。这篇综述旨在提供全面和最新的除氯技术的知识和见解。目前,除氯方法主要有化学沉淀法、吸附法、膜分离技术和高级氧化技术。在化学沉淀法中,Cl?通过形成CuCl、AgCl和BiOCl沉淀而被去除。用于除氯的吸附剂主要有离子交换剂、双金属氧化物和碳基电极。高级氧化技术(AOPs)包括臭氧AOPs、电化学AOPs和过硫酸盐AOPs。膜分离除氯技术包括扩散渗析、纳滤和反渗透。这些除氯技术仍存在诸多不足之处。因此,寻找更有效的除氯方法仍然是一个重要且具有挑战性的问题。
Salinization caused by the high concentration of Cl? in water has become one of the most serious and common environmental problems. This review aims to provide comprehensive and up-to-date knowledge and insights on chloride removal technologies. At present, the main methods of chlorine removal are chemical precipitation, adsorption, membrane separation and advanced oxidation processes (AOPs). In chemical precipitation, Cl? is removed by forming CuCl, AgCl, and BiOCl precipitates. The main adsorbents used for chlorine removal are ion exchangers, bimetallic oxides and carbon-based electrodes. AOPs include ozone-based AOPs, electrochemical-based AOPs, and peroxymonosulfate-based AOPs. Membrane separation processes include diffusion dialysis, nanofiltration and reverse osmosis. These chloride removal processes still have many short-comings. Therefore, finding more effective methods of chloride removal remains an important and challenging issue.

References

[1]  Boo, C., Winton, R.K., Conway, K.M. and Yip, N.Y. (2019) Membrane-Less and Non-Evaporative Desalination of Hypersaline Brines by Temperature Swing Solvent Extraction. Environmental Science & Technology Letters, 6, 359-364.
https://doi.org/10.1021/acs.estlett.9b00182
[2]  Kaushal, S.S., Likens, G.E., Utz, R.M., Pace, M.L., Grese, M. and Yepsen, M. (2013) Increased River Alkalinization in the Eastern U.S. Environmental Science & Technology, 47, 10302-10311.
https://doi.org/10.1021/es401046s
[3]  Stets, E.G., Lee, C.J., Lytle, D.A. and Schock, M.R. (2018) Increasing Chloride in Rivers of the Conterminous U.S. and Linkages to Potential Corrosivity and Lead Action Level Exceedances in Drinking Water. Science of the Total Environment, 613-614, 1498-1509.
https://doi.org/10.1016/j.scitotenv.2017.07.119
[4]  Kaushal, S.S. (2016) Increased Salinization Decreases Safe Drinking Water. Environmental Science & Technology, 50, 2765-2766.
https://doi.org/10.1021/acs.est.6b00679
[5]  Fl?rke, M., B?rlund, I., van Vliet, M.T.H., Bouwman, A.F. and Wada, Y. (2019) Analysing Trade-Offs between SDGs Related to Water Quality Using Salinity as a Marker. Current Opinion in Environmental Sustainability, 36, 96-104.
https://doi.org/10.1016/j.cosust.2018.10.005
[6]  Li, Y., Yang, Z., Yang, K., Wei, J., Li, Z., Ma, C., Yang, X., Wang, T., Zeng, G., Yu, G., Yu, Z. and Zhang, C. (2022) Removal of Chloride from Water and Wastewater: Removal Mechanisms and Recent Trends. Science of the Total Environment, 821, Article ID: 153174.
https://doi.org/10.1016/j.scitotenv.2022.153174
[7]  Yang, J.B., Jeong, B.C., Seo, S.I., Jeon, S.S., Choi, H.Y. and Lee, H.M. (2010) Outcome of Prostate Biopsy in Men Younger than 40 Years of Age with High Prostate-Specific Antigen (PSA) Levels. Korean Journal of Urology, 51, 21-24.
https://doi.org/10.4111/kju.2010.51.1.21
[8]  Wu, X., Liu, Z. and Liu, X. (2013) Chloride Ion Removal from Zinc Sulfate Aqueous Solution by Electrochemical Method. Hydrometallurgy, 134-135, 62-65.
https://doi.org/10.1016/j.hydromet.2013.01.017
[9]  Polo, A.M.S., Lopez-Penalver, J.J., Rivera-Utrilla, J., Von Gunten, U. and Sanchez-Polo, M. (2017) Halide Removal from Waters by Silver Nanoparticles and Hydrogen Peroxide. Science of the Total Environment, 607-608, 649-657.
https://doi.org/10.1016/j.scitotenv.2017.05.144
[10]  谭青, 李启厚, 刘志宏. 湿法炼锌过程中氟氯脱除技术研究现状[J]. 湿法冶金, 2015, 34(4): 264-269.
[11]  Sun, B., Liu, X., Liu, W., Zhang, D., Chen, L. and Yang, T. (2020) A Clean Process for Chloridion Removal from Manganese Sulfate Electrolyte Using Bismuthyl Sulfate. Hydrometallurgy, 198, Article ID: 105508.
https://doi.org/10.1016/j.hydromet.2020.105508
[12]  Dron, J. and Dodi, A. (2011) Comparison of Adsorption Equilibrium Models for the Study of Cl?, and Removal from Aqueous Solutions by an Anion Ex-change Resin. Journal of Hazardous Materials, 190, 300-307.
https://doi.org/10.1016/j.jhazmat.2011.03.049
[13]  Abu-Arabi, M.K., Emeish, S. and Hudaib, B.I. (2013) Chloride Removal from Eshidiya Phosphate Mining Wastewater. Desalination and Water Treatment, 51, 1634-1640.
https://doi.org/10.1080/19443994.2012.699343
[14]  Li, H., Chen, Y., Long, J., Jiang, D., Liu, J., Li, S., Qi, J., Zhang, P., Wang, J., Gong, J., Wu, Q. and Chen, D. (2017) Simultaneous Removal of Thallium and Chloride from a Highly Saline Industrial Wastewater Using Modified Anion Exchange Resins. Journal of Hazardous Materials, 333, 179-185.
https://doi.org/10.1016/j.jhazmat.2017.03.020
[15]  Lv, L., Sun, P., Gu, Z., Du, H., Pang, X., Tao, X., Xu, R. and Xu, L. (2009) Removal of Chloride Ion from Aqueous Solution by ZnAl-NO3 Layered Double Hy-droxides as Anion-Exchanger. Journal of Hazardous Materials, 161, 1444-1449.
https://doi.org/10.1016/j.jhazmat.2008.04.114
[16]  Paul, B. and Chang, W. (2020) Mayenite-to-Hydrocalumite Transformation for the Removal of Chloride from Salinized Groundwater and the Recycling Potential of Spent Hydrocalumite for Chromate Removal. Desalination, 474, Article ID: 114186.
https://doi.org/10.1016/j.desal.2019.114186
[17]  Lv, L., He, J., Wei, M., Evans, D.G. and Duan, X. (2006) Uptake of Chloride Ion from Aqueous Solution by Calcined Layered Double Hydroxides: Equilibrium and Kinetic Studies. Water Research, 40, 735-743.
https://doi.org/10.1016/j.watres.2005.11.043
[18]  Hamidi, R., Kahforoushan, D. and Fatehifar, E. (2013) The Simultaneous Removal of Calcium, Magnesium and Chloride Ions from Industrial Wastewater Using Magnesi-um-Aluminum Oxide. Journal of Environmental Science and Health, Part A, 48, 1225-1230.
https://doi.org/10.1080/10934529.2013.776855
[19]  Zhao, Y., Hu, W., Chen, J. and Lv, L. (2011) Factors Influencing the Chloride Removal of Aqueous Solution by Calcined Layered Double Hydroxides. Desalination and Water Treatment, 36, 50-56.
https://doi.org/10.5004/dwt.2011.1856
[20]  Kameda, T., Yoshioka, T., Mitsuhashi, T., Uchida, M. and Oku-waki, A. (2003) The Simultaneous Removal of Calcium and Chloride Ions from Calcium Chloride Solution Using Magnesium-Aluminum Oxide. Water Research, 37, 4045-4050.
https://doi.org/10.1016/S0043-1354(03)00311-7
[21]  Yang, C.X., Yang, G.L., Shi, Y.J. and Chen, S.J. (2012) Study on Electrosorption Removal of Chloride Ion from Reclaimed Water. Advanced Materials Research, 356-360, 2015-2019.
https://doi.org/10.4028/www.scientific.net/AMR.356-360.2015
[22]  Hou, C.-H. and Huang, C.-Y. (2013) A Comparative Study of Electrosorption Selectivity of Ions by Activated Carbon Electrodes in Capacitive Deionization. Desalination, 314, 124-129.
https://doi.org/10.1016/j.desal.2012.12.029
[23]  Rasines, G., Lavela, P., Macías, C., Zafra, M.C., Tirado, J.L. and Ania, C.O. (2015) Mesoporous Carbon Black-Aerogel Composites with Optimized Properties for the Electro-Assisted Removal of Sodium Chloride from Brackish Water. Journal of Electroanalytical Chemistry, 741, 42-50.
https://doi.org/10.1016/j.jelechem.2015.01.016
[24]  Wang, H., Yuan, T., Huang, L., He, Y., Wu, B., Hou, L., Liao, Q. and Yang, W. (2020) Enhanced Chloride Removal of Phosphorus Doping in Carbon Material for Capacitive Deionization: Experimental Measurement and Theoretical Calculation. Science of the Total Environment, 720, Article ID: 137637.
https://doi.org/10.1016/j.scitotenv.2020.137637
[25]  Xiao, H.-F., Chen, Q., Cheng, H., Li, X.-M., Qin, W.-M., Chen, B.-S., Xiao, D. and Zhang, W.-M. (2017) Selective Removal of Halides from Spent Zinc Sulfate Electrolyte by Diffusion Dialysis. Journal of Membrane Science, 537, 111-118.
https://doi.org/10.1016/j.memsci.2017.05.009
[26]  Du, M.-G., Chen, Q., Gao, W.-T., Li, X.-M. and Zhang, W.-M. (2020) Selective Removal of Chloride from the Adipate Formation Bath in Foil Industry by Diffusion Dialysis. Separation and Purification Technology, 230, Article ID: 115871.
https://doi.org/10.1016/j.seppur.2019.115871
[27]  Lin, W., Xuan, Z., Meng, Z. and Zhou, C.X. (2009) De-salination of Reclaimed Water by Nanofiltration in an Artificial Groundwater Recharge System. Journal of Water Supply: Research and Technology-Aqua, 58, 463-469.
https://doi.org/10.2166/aqua.2009.016
[28]  Suingil Choi, Z.Y., Hong, S. and Ahrf, K. (2001) The Effect of Co-Existing Ions and Surface Characteristics of Nanomembranes on the Removal of Nitrate and Fluoride. Desali-nation, 133, 53-64.
https://doi.org/10.1016/S0011-9164(01)00082-0
[29]  Welch, B.C., McIntee, O.M., Myers, T.J., Greenberg, A.R., Bright, V.M. and George, S.M. (2021) Molecular Layer Deposition for the Fabrication of Desalination Mem-branes with Tunable Metrics. Desalination, 520, Article ID: 115334.
https://doi.org/10.1016/j.desal.2021.115334
[30]  Reid, C.E. and Breton, E.J. (1959) Water and Ion Flow across Cellulosic Membranes. Journal of Applied Polymer Science, 1, 133-143.
https://doi.org/10.1002/app.1959.070010202
[31]  Habib, S. and Weinman, S.T. (2021) A Review on the Synthesis of Fully Aromatic Polyamide Reverse Osmosis Membranes. Desalination, 502, Article ID: 114939.
https://doi.org/10.1016/j.desal.2021.114939
[32]  Peng, L.E., Yao, Z., Liu, X., Deng, B., Guo, H. and Tang, C.Y. (2019) Tailoring Polyamide Rejection Layer with Aqueous Carbonate Chemistry for Enhanced Membrane Separa-tion: Mechanistic Insights, Chemistry-Structure-Property Relationship, and Environmental Implications. Environ-mental Science & Technology, 53, 9764-9770.
https://doi.org/10.1021/acs.est.9b03210
[33]  Habib, S. and Weinman, S.T. (2021) A Review on the Synthesis of Fully Aromatic Polyamide Reverse Osmosis Membranes. Desalination, 502, Article ID: 114939.
https://doi.org/10.1016/j.desal.2021.114939
[34]  Wu, H., Zhang, X., Zhao, X.-T., Li, K., Yu, C.-Y., Liu, L.-F., Zhou, Y.-F. and Gao, C.-J. (2020) High-Flux Reverse Osmosis Membranes Fabricated with Hyperbranched Polymers via Novel Twice-Crosslinked Interfacial Polymerization Method. Journal of Membrane Science, 595, Article ID: 117480.
https://doi.org/10.1016/j.memsci.2019.117480
[35]  Levanov, A.V., Isaikina, O.Y., Gasanova, R.B., Uzhel, A.S. and Lunin, V.V. (2019) Kinetics of Chlorate Formation during Ozonation of Aqueous Chloride Solutions. Chemosphere, 229, 68-76.
https://doi.org/10.1016/j.chemosphere.2019.04.105
[36]  Levanov, A.V., Kuskov, I.V., Zosimov, A.V., Anti-penko, E.E. and Lunin, V.V. (2003) Acid Catalysis in Reaction of Ozone with Chloride Ions. Kinetics and Catalysis, 44, 740-746.
https://doi.org/10.1023/B:KICA.0000009047.90252.2d
[37]  Levanov, A.V., Kuskov, I.V., Koiaidarova, K.B., Zosimov, A.V., Antipenko, E.E. and Lunin, V.V. (2005) Catalysis of the Reaction of Ozone with Chloride Ions by Metal Ions in an Acidic Medium. Kinetics and Catalysis, 46, 138-143.
https://doi.org/10.1007/s10975-005-0021-z
[38]  Levanov, A.V. and Isaikina, O.Y. (2020) Mechanism and Kinetic Model of Chlorate and Perchlorate Formation during Ozonation of Aqueous Chloride Solutions. Industrial & Engineering Chemistry Research, 59, 14278-14287.
https://doi.org/10.1021/acs.iecr.0c02770
[39]  Pignatello, J.J., Oliveros, E. and MacKay, A. (2006) Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology, 36, 1-84.
https://doi.org/10.1080/10643380500326564
[40]  Liu, W., Zhang, R., Liu, Z. and Li, C. (2016) Removal of Chloride from Simulated Zinc Sulfate Electrolyte by Ozone Oxidation. Hydrometallurgy, 160, 147-151.
https://doi.org/10.1016/j.hydromet.2015.12.006
[41]  Wang, D.-J., Yi, H.-H., Tang, X.-L., Wang, S.-M., Guo, W.-L. and Li, J.-T. (2019) Experimental Study on the Electrolytic Treatment of Ammonia and Chlorine in the Wastewater from the Precipitation of Rare Earth Carbonate. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41, 216-228.
https://doi.org/10.1080/15567036.2018.1512685
[42]  Cui, L., Li, G., Li, Y., Yang, B., Zhang, L., Dong, Y. and Ma, C. (2017) Electrolysis-Electrodialysis Process for Removing Chloride Ion in Wet Flue Gas Desulfurization Wastewater (DW): Influencing Factors and Energy Consumption Analysis. Chemical Engineering Research and Design, 123, 240-247.
https://doi.org/10.1016/j.cherd.2017.05.016
[43]  Xu, K., Peng, J., Chen, P., Gu, W., Luo, Y. and Yu, P. (2019) Preparation and Characterization of Porous Ti/SnO2- Sb2O3/PbO2 Electrodes for the Removal of Chloride Ions in Water. Processes, 7, 762-775.
https://doi.org/10.3390/pr7100762
[44]  Lutze, H.V., Kerlin, N. and Schmidt, T.C. (2015) Sulfate Radi-cal-Based Water Treatment in Presence of Chloride: Formation of Chlorate, Inter-Conversion of Sulfate Radicals into Hydroxyl Radicals and Influence of Bicarbonate. Water Research, 72, 349-360.
https://doi.org/10.1016/j.watres.2014.10.006
[45]  Zrinyi, N. and Pham, A.L. (2017) Oxidation of Benzoic Acid by Heat-Activated Persulfate: Effect of Temperature on Transformation Pathway and Product Distribution. Water Research, 120, 43-51.
https://doi.org/10.1016/j.watres.2017.04.066
[46]  Hu, X., Zhu, F., Kong, L. and Peng, X. (2021) Sulfate Radical-Based Removal of Chloride Ion from Strongly Acidic Wastewater: Kinetics and Mechanism. Journal of Hazardous Materials, 410, Article ID: 124540.
https://doi.org/10.1016/j.jhazmat.2020.124540

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133