全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Temperature Sensitivity of Soil Respiration Probed by Numerical Analysis of Field-Observed Data Sets

DOI: 10.4236/gep.2023.118005, PP. 65-84

Keywords: Air-Filled Porosity, Inverse Analysis, Mass Balance, Potentially Maximum CO2 Production Rate, Soil Gas Diffusion, Water Content

Full-Text   Cite this paper   Add to My Lib

Abstract:

Temperature sensitivity of soil respiration is essential to predict possible changes in terrestrial carbon budget on various scenarios about atmospheric and soil climates. Although it is often evaluated by using respiratory quotient “Q10”, Q10 values of soil respiration seem to vary depending on methods or scales of evaluation. Aiming at probing how Q10 values of soil respiration are evaluated differently for a field, this study used a model of soil respiration rate, and numerically evaluated soil respiration rates along depth by fitting the model to depth distributions of CO2 concentration measured in a field. And temperature sensitivity of soil respiration rate was evaluated by comparing the determined soil respiration rates with atmospheric and soil temperatures measured in the field. The results showed that the relation between surface CO2 emission rates and atmospheric temperatures was represented by lower Q10 values than that between soil respiration rates and soil temperatures, presumably because the top soil layers had acclimatized in more extent to the existing thermal regime than the underlying deeper layers. Thus, for evaluating effects of long-term rise in atmospheric temperature on soil respiration, it is necessary to precisely predict the long-term change in depth distribution of soil temperature as well as to quantify temperature sensitivity of soil respiration along depth. The evaluated sensitivity of surface CO2 emission rate to atmospheric temperature showed hysteresis, implying the needs for more knowledge about temperature sensitivity of soil respiration evaluated in both warming and cooling processes for better understandings and predictions about terrestrial carbon cycling.

References

[1]  Batjes, N. H. (1996). Total Carbon and Nitrogen in the Soils of the World. European Journal of Soil Science, 47, 151-163.
https://doi.org/10.1111/j.1365-2389.1996.tb01386.x
[2]  Bond-Lamberty, B., & Thomson, A. M. (2010). Temperature-Associated Increases in the Global Soil Respiration Record. Nature, 464, 579-582.
https://doi.org/10.1038/nature08930
[3]  Eswaran, H., van den Berg, E., & Reich, P. (1993). Organic Carbon in Soils of the World. Soil Science Society of America Journal, 57, 192-194.
https://doi.org/10.2136/sssaj1993.03615995005700010034x
[4]  Fierer, N., Chadwick, O. A., & Trumbore, S. E. (2005). Production of CO2 in Soil Profiles of a California Annual Grassland. Ecosystems, 8, 412-429.
https://doi.org/10.1007/s10021-003-0151-y
[5]  Freijer, J. I., & Leffelaar, P. A. (1996). Adapted Fick’s Law Applied to Soil Respiration. Water Resources Research, 32, 791-800.
https://doi.org/10.1029/95WR03820
[6]  Guntinas, M. E., Gil-Sotres, F., Leiros, M. C., & Trasar-Cepeda, C. (2013). Sensitivity of Soil Respiration to Moisture and Temperature. Journal of Soil Science and Plant Nutrition, 13, 445-461.
https://doi.org/10.4067/S0718-95162013005000035
[7]  Hashimoto, S., Carvalhais, N., Ito, A., Migliavacca, M., Nishina, K., & Reichstein, M. (2015). Global Spatiotemporal Distribution of Soil Respiration Modeled Using a Global Database. Biogeosciences, 12, 4121-4132.
https://doi.org/10.5194/bg-12-4121-2015
[8]  Iiyama, I. (2023). Seasonal Change in CO2 Production Rate along Depth in a Grassland Field. Journal of Geoscience and Environment Protection, 11, 106-124.
https://doi.org/10.4236/gep.2023.116008
[9]  Iiyama, I., Osawa, K., & Nagata, O. (2012). Soil O2 Profile Affected by Gas Diffusivity and Water Retention in a Drained Peat Layer. Soils and Foundations, 52, 49-58.
https://doi.org/10.1016/j.sandf.2012.01.005
[10]  Ise, T., & Moorcroft, P. R. (2006). The Global-Scale Temperature and Moisture Dependencies of Soil Organic Carbon Decomposition: An Analysis Using a Mechanistic Decomposition Model. Biogeochemistry, 80, 217-231.
https://doi.org/10.1007/s10533-006-9019-5
[11]  Jassal, R. S., Black, T. A., Novak, M. D., Gaumont-Guay, D., & Nesic, Z. (2008). Effect of Soil Water Stress on Soil Respiration and Its Temperature Sensitivity in an 18-Year-Old Temperate Douglas-Fir Stand. Global Change Biology, 14, 1-14.
https://doi.org/10.1111/j.1365-2486.2008.01573.x
[12]  Kaminski, T., Knorr, W., Rayner, P. J., & Heimann, M. (2002). Assimilating Atmospheric Data into a Terrestrial Biosphere Model: A Case Study of the Seasonal Cycle. Global Biogeochemical Cycles, 16, Article No. 1066.
https://doi.org/10.1029/2001GB001463
[13]  Kim, G. S., Joo, S. J., & Lee, C. S. (2020). Seasonal Variation of Soil Respiration in the Mongolian Oak (Quercus mongolica Fisch, Ex Ledeb.) Forests at the Cool Temperate Zone in Korea. Forests, 11, Article No. 984.
https://doi.org/10.3390/f11090984
[14]  Knorr, W., & Heimann, M. (1995). Impact of Drought Stress and Other Factors on Seasonal Land Biosphere CO2 Exchange Studies through an Atmospheric Tracer Transport Model. Tellus B: Chemical and Physical Meteorology, 47, 471-489.
https://doi.org/10.3402/tellusb.v47i4.16062
[15]  Kochy, M., Hiederer, R., & Freibauer, A. (2015). Global Distribution of Soil Organic Carbon—Part 1: Masses and Frequency Distributions of SOC Stocks for the Tropics, Permafrost Regions, Wetlands, and the World. Soil, 1, 351-365.
https://doi.org/10.5194/soil-1-351-2015
[16]  Lee, D. K., Doolittle, J. J., & Owens, V. N. (2007). Soil Carbon Dioxide Fluxes in Established Switchgrass Land Managed for Biomass Production. Soil Biology and Biochemistry, 39, 178-186.
https://doi.org/10.1016/j.soilbio.2006.07.004
[17]  Liu, X., Wan, S., Su, B., Hui, D., & Luo, Y. (2002). Response of Soil CO2 Efflux to Water Manipulation in a Tallgrass Prairie Ecosystem. Plant and Soil, 240, 213-223.
https://doi.org/10.1023/A:1015744126533
[18]  Liu, Z., Deng, Z., Davis, S., & Ciais, P. (2023). Monitoring Global Carbon Emissions in 2022. Nature Reviews Earth and Environment, 4, 205-206.
https://doi.org/10.1038/s43017-023-00406-z
[19]  Mahecha, M. D., Reichstein, M., Carvalhais, N., Lasslop, G., Lange, H., Seneviratne, S. I., Vargas, R., Ammann, C., Arain, M. A., Cescatti, A., Janssen, I. A., Migliavacca, M., Montagnani, L., & Richardson, A. D. (2010). Global Convergence in the Temperature Sensitivity of Respiration at Ecosystem Level. Science, 329, 838-840.
https://doi.org/10.1126/science.1189587
[20]  Makita, T. (1988). Diffusion Coefficient in Gaseous Phase. In Kagakukougaku-Binran (Ed.), The Society of Chemical Engineers, Japan (pp. 100-104). Maruzen, Tokyo. (In Japanese)
[21]  National Astronomical Observatory of Japan (2020). Rika Nenpyo 2021 (Chronological Scientific Tables 2021) (pp. 532-535). Maruzen Publishing Co., Ltd. (In Japanese)
[22]  Osozawa, S., & Hasegawa, S. (1995). Diel and Seasonal Changes in Carbon Dioxide Concentration and Flux in an Andisol. Soil Science, 160, 117-124.
https://doi.org/10.1097/00010694-199516020-00005
[23]  Post, W. M., Emanuel, W. R., Zinke, P. J., & Stangenberger, A. G. (1982). Soil Carbon Pools and World Life Zones. Nature, 298, 156-159.
https://doi.org/10.1038/298156a0
[24]  Raich, J. W., & Schlesinger, W. H. (1992). The Global Carbon Dioxide Flux in Soil Respiration and Its Relationship to Vegetation and Climate. Tellus B: Chemical and Physical Meteorology, 44, 81-99.
https://doi.org/10.3402/tellusb.v44i2.15428
[25]  Risk, D., Kellman, L., & Beltrami, H. (2002). Soil CO2 Production and Surface Flux at Four Climate Observatories in Eastern Canada. Global Biogeochemical Cycles, 16, Article No. 1122.
https://doi.org/10.1029/2001GB001831
[26]  Wang, M., Li, X., Wang, S., Wang, G., & Zhang, J. (2018). Patterns and Controls of Temperature Sensitivity of Soil Respiration in a Meadow Steppe of the Songnen Plain, Northeast China. PLOS ONE, 13, e0204053.
https://doi.org/10.1371/journal.pone.0204053
[27]  Wang, W., Chen, W., & Wang, S. (2010). Forest Soil Respiration and Its Heterotrophic and Autotrophic Components: Global Patterns and Responses to Temperature and Precipitation. Soil Biology and Biochemistry, 42, 1236-1244.
https://doi.org/10.1016/j.soilbio.2010.04.013
[28]  Xu, L., Baldocchi, D. D., & Tang, J. (2004). How Soil Moisture, Rain Pulses, and Growth Alter the Response of Ecosystem Respiration to Temperature. Global Biogeochemical Cycles, 18, GB4002.
https://doi.org/10.1029/2004GB002281
[29]  Zhan, Z., Zhang, R., Cescatti, A., Wohlfahrt, G., Buchmann, N., Zhu, J., Chen, G., Moyano, F., Pumpanen, J., Hirano, T., Takagi, K., & Merbold, L. (2017). Effect of Climate Warming on the Annual Terrestrial Net Ecosystem CO2 Exchange Globally in the Boreal and Temperate Regions. Scientific Reports, 7, Article No. 3108.
https://doi.org/10.1038/s41598-017-03386-5
[30]  Zhang, L. H., Chen, Y. N., Zhao, R. F., & Li, W. H. (2010). Significance of Temperature and Soil Water Content on Soil Respiration in Three Desert Ecosystems in Northwest China. Journal of Arid Environments, 74, 1200-1211.
https://doi.org/10.1016/j.jaridenv.2010.05.031
[31]  Zhang, Z. S., Dong, X. J., Xu, B. X., Chen, Y. L., Zhao, Y., Gao, Y. H., Hu, Y. G., & Huang, L. (2015). Soil Respiration Sensitivities to Water and Temperature in a Revegetated Desert. Journal of Geophysical Research: Biogeosciences, 120, 773-787.
https://doi.org/10.1002/2014JG002805
[32]  Zhou, T., Shi, P., Hui, D., & Luo, Y. (2009). Global Pattern of Temperature Sensitivity of Soil Heterotrophic Respiration (Q10) and Its Implications for Carbon-Climate Feedback. Journal of Geophysical Research, 114, G02016.
https://doi.org/10.1029/2008JG000850

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133