全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

利用极限与无穷小之间的关系快速求渐近线
Using the Relationship between Limit and In-finitesimal to Find Asymptote Quickly

DOI: 10.12677/AAM.2023.128369, PP. 3753-3762

Keywords: 显函数,隐函数,极限,无穷大,无穷小,无穷间断点,垂直渐近线,水平渐近线, 斜渐近线,四种题型
Explicit Function
, Implicit Function, Limit, Infinity, Infinitesimal, Infinite Breakpoint, Vertical Asymptote, Horizontal Asymptote, Oblique Asymptote, Four Types of Problems

Full-Text   Cite this paper   Add to My Lib

Abstract:

函数图形描述的是“增减极值渐近线,凹凸拐点曲率圆”,其中渐近线描述函数图形变化趋势。求水平渐近线、斜渐近线需要针对函数关系y=f(x)分别考虑两个单侧极限(x→-∞或 x→+∞),斜渐近线在第一次求出斜率之后还需要第二次求极限才能求出截距,垂直渐近线对应于函数的无穷间断点。隐函数F(x,y)=0由于难以得出函数关系y=f(x),从而更加难以求出渐近线。本文梳理了显函数求垂直、水平、斜渐近线的四种题型及其快速解法,使得求渐近线快速简洁,同时给出了丰富的实例。创新之处在于利用极限与无穷小之间的关系快速简便求出渐近线,同时讨论了隐函数间接求垂直、水平、斜渐近线的方法。
The Graph of a function describes “increasing or decreasing, extreme value, asymptote, concave, convex, inflection point, curvature circle”, in which the asymptote describes the change trend of the function graph. To calculate the horizontal Asymptote and the oblique Asymptote, two unilateral limits (x→-∞ or x→+∞ ) need to be considered respectively for the functional relationship y=f(x) . The oblique Asymptote needs to calculate the limit for the second time after calculating the slope for the first time to calculate the intercept. The vertical Asymptote corresponds to the in-finite breakpoint of the function. The Implicit function F(x,y)=0 is more difficult to find the As-ymptote because it is difficult to find the functional relationship y=f(x) . This paper combs four types of problems and their fast solving process of explicit function to solve vertical, horizontal and oblique Asymptote, which makes solving Asymptote fast and concise, and gives a wealth of exam-ples. The innovation lies in using the relationship between the limit and the infinitesimal to quickly and simply find the Asymptote. At the same time, the method of indirectly finding vertical, hori-zontal and oblique Asymptote with Implicit function is discussed.

References

[1]  同济大学数学系. 高等数学[M]. 第7版. 北京: 高等教育出版社, 2014.
[2]  晏建学. 微积分、线性代数、概率论与数理统计解题指导及提高[M]. 昆明: 云南科技出版社, 2018.
[3]  马锐主. 高等数学[M]. 第二版. 北京: 高等教育出版社, 2019.
[4]  [美]斯蒂芬?沃尔夫雷姆. Mathematica全书[M]. 第4版. 赫孝良, 周义仓, 译. 西安: 西安交通大学出版社, 2002.
[5]  李永乐. 数学历年真题权威解析数学一[M]. 北京: 国家行政学院出版社, 2019.
[6]  汤家凤. 2020考研数学接力题典1800题目册数学三[M]. 北京: 中国原子能出版社, 2019.
[7]  张宇. 张宇考研数学基础30讲数一[M]. 北京: 北京理工大学出版社, 2020.
[8]  汤家凤. 2022考研数学接力题典1800题目册数学一[M]. 北京: 中国原子能出版社, 2020.
[9]  李永乐. 2019考研数学复习全书[M]. 北京: 国家行政学院出版社, 2019.
[10]  张宇. 张宇考研数学基础30讲数一基础300题[M]. 北京: 北京理工大学出版社, 2020.
[11]  张宇. 张宇考研数学题源探析经典1000题[M]. 北京: 北京理工大学出版社, 2019.
[12]  汤家凤. 2023考研数学接力题典1800题目册数学三[M]. 北京: 中国政法大学出版社, 2021.
[13]  李永乐. 分阶习题同步训练数学一[M]. 北京: 国家行政学院出版社, 2019.
[14]  李永乐. 数学基础过关660题数学一[M]. 北京: 国家行政学院出版社, 2019.
[15]  考研数学渐近线相关知识点及其解题技巧[EB/OL]. https://mp.weixin.qq.com/s?search_click_id=15135066713143917286-1692179062721-1814163846&__biz=Mzg5NDMzMzE1Nw==&mid=2247485892&idx =1&sn=f4f3836649f608d2d5d681245a54a859&chksm=c02070 4ef757f958c69f54203885b1e6c7353c704d2fe509457cf9daa 21474529fa566a1ef7f&scene=7&subscene=10000&clicktim e=1692179062&enterid=1692179062&sessionid=0&ascene =65&fasttmpl_type=0&fasttmpl_fullversion=6814356-zh_ CN-zip&fasttmpl_flag=0&realreporttime=1692179062744#rd , 2022-04-12.
[16]  陈文灯, 黄先开, 曹显兵. 2006版数学题型集萃与练习题集(经济类) [M]. 北京: 世界图书出版公司北京公司, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133