全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Charging Mechanism of Lightning at the Molecular Level

DOI: 10.4236/acs.2023.134023, PP. 415-430

Keywords: Cloud Electrification, Charge Separation, Collision, Molecular Level

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cloud electrification is one of the oldest unresolved puzzles in the atmospheric sciences. Though many mechanisms for charge separation in clouds have been proposed, a quantitative understanding of their respective contribution in a given meteorological situation is lacking. Here we suggest and analyze a hitherto little discussed process. A qualitative picture at the molecular level of the charge separation mechanism of lightning in a thundercloud is proposed. It is based on two key physical/chemical natural phenomena, namely, internal charge separation of the atmospheric impurities/aerosols inside an atmospheric water cluster/droplet/ice particle and the existence of liquid water layers on rimers (graupels and hailstones) forming a layer of dipoles with H+ pointing out from the air-water interface. Charge separation is achieved through strong collisions among ice particles and water droplets with the rimers in the turbulence of the thundercloud. This work would have significant contribution to cloud electrification and lightning formation.

References

[1]  Wilson, C.T.R. (1916) On Some Determinations of the Sign and Magnitude of Electric Discharges in Lightning Flashes. Proceeding of Royal Society of London A, 92, 555-574.
https://doi.org/10.1098/rspa.1916.0040
[2]  Krehbiel, P.R., Brook, M. and McCrory, R.A. (1979) An Analysis of the Charge Structure of Lightning Discharges to Ground. Journal of Geophysical Research, 84, 2432-2456.
https://doi.org/10.1029/JC084iC05p02432
[3]  Stolzenburg, M., Rust, W.D. and Marshall, T.C. (1998) Electrical Structure in Thunderstorm Convective Regions: 2. Isolated Storms. Journal of Geophysical Research, 103, 14079-14096.
https://doi.org/10.1029/97JD03547
[4]  Saunders, C. (2008) Charge Separation Mechanisms in Clouds. Space Science Reviews, 137, 335-353.
https://doi.org/10.1007/978-0-387-87664-1_22
[5]  Lenard, P. (1892) über die Elektricität der Wasserfälle. Annalen der Physik Lpz, 46, 584-636.
https://doi.org/10.1002/andp.18922820805
[6]  Helsdon, J.H., Gattaleeradapan Jr., S., Farley, R.D. and Waits, C.C. (2002) An Examination of the Convective Charging Hypothesis: Charge Structure, Electric Fields, and Maxwell Currents. Journal of Geophysical Research, 107, 4630.
https://doi.org/10.1029/2001JD001495
[7]  Mason, B.J. (1988) The Generation of Electric Charges and Fields in Thunderstorms. Proceedings of Royal Society of London A, 415, 303-315.
https://doi.org/10.1098/rspa.1988.0015
[8]  Reynolds, S.E. and Brook, M. (1956) Correlation of the Initial Electric Field and the Radar Echo in Thunderstorms. Journal of Meteorology, 13, 376-380.
https://doi.org/10.1175/1520-0469(1956)013<0376:COTIEF>2.0.CO;2
[9]  Takahashi, T. (1984) Thunderstorm Electrification—A Numerical Study. Journal of the Atmospheric Sciences, 41, 2541-2558.
https://doi.org/10.1175/1520-0469(1984)041<2541:TENS>2.0.CO;2
[10]  Saunders, C.P.R., Keith, W.D. and Mitzeva, R.P. (1991) The Effect of Liquid Water on Thunderstorm Charging. Journal of Geophysical Research, 96, 11007-11017.
https://doi.org/10.1029/91JD00970
[11]  Caranti, J.M., Avila, E. and Re, M. (1991) Charge Transfer during Individual Collisions in Ice Growing from Vapor Deposition. Journal of Geophysical Research, 96, 15365-15373.
https://doi.org/10.1029/90JD02691
[12]  Jayaratne, E.R. (1993) The Heat Balance of a Riming Graupel Pellet and the Charge Separation during Ice-Ice Collisions. Journal of the Atmospheric Sciences, 50, 3185-3193.
https://doi.org/10.1175/1520-0469(1993)050<3185:THBOAR>2.0.CO;2
[13]  Brooks, I.M., Saunders, C.P.R., Mitzeva, R.P. and Peck, S.L. (1997) The Effect on Thunderstorm Charging of the Rate of Rime Accretion by Graupel. Atmospheric Research, 43, 277-295.
https://doi.org/10.1016/S0169-8095(96)00043-9
[14]  Pereyra, R.G., Avila, E.E., Castellano, N.E. and Saunders, C.P.R. (2000) A Laboratory Study of Graupel Charging. Journal of Geophysical Research, 105, 20803-20812.
https://doi.org/10.1029/2000JD900244
[15]  Berdeklis, P. and List, R. (2001) The Ice Crystal-Graupel Collision Charging Mechanism of Thunderstorm Electrification. Journal of Atmospheric Sciences, 58, 2751-2770.
https://doi.org/10.1175/1520-0469(2001)058<2751:TICGCC>2.0.CO;2
[16]  Yair, Y. (2008) Charge Generation and Separation Processes. Space Science Reviews, 137, 119-131.
https://doi.org/10.1007/978-0-387-87664-1_8
[17]  Dash, J.G., Mason, B.L. and Wettlaufer, J.S. (2001) Theory of Charge and Mass Transfer in Ice-Ice Collisions. Journal of Geophysical Research, 106, 20395-20402.
https://doi.org/10.1029/2001JD900109
[18]  Cotton, W.R., Bryan, G.H. and van den Heever, S.C. (2010) Storm and Cloud Dynamics. Elsevier, Amsterdam.
https://doi.org/10.1016/S0074-6142(10)09907-9
[19]  MacGorman, D.R. and Rust, W.D. (1998) The Electrical Nature of Storms. Oxford University Press, Oxford.
[20]  Mason, B.L. and Dash, J.G. (2000) Charge and Mass Transfer in Ice-Ice Collisions: Experimental Observations of a Mechanism in Thunderstorm Electrification. Journal of Geophysical Research, 105, 10185-10192.
https://doi.org/10.1029/2000JD900104
[21]  Pruppacher, H.R. and Klett, J.D. (2010) Microphysics of Clouds and Precipitation. Springer, Dordrecht.
https://doi.org/10.1007/978-0-306-48100-0
[22]  Saunders, C.P.R. (1993) A Review of Thunderstorm Electrification Processes. Journal Applied Meteorology and Climatology, 32, 642-655.
https://doi.org/10.1175/1520-0450(1993)032<0642:AROTEP>2.0.CO;2
[23]  Wang, P.K. (2013) Physics and Dynamics of Clouds and Precipitation. Cambridge University Press, Cambridge, 167-171.
https://doi.org/10.1017/CBO9780511794285
[24]  Korolev, A. and Leisner, T. (2020) Review of Experimental Studies of Secondary Ice Production. Atmospheric Chemistry and Physics, 20, 11767-11797.
https://doi.org/10.5194/acp-20-11767-2020
[25]  Wallace, J.M. and Hobbs, P.V. (2006) Atmospheric Science, an Introductory Survey. 2nd Edition, Elsevier, Amsterdam.
[26]  Gebhardt, C.R., Schroeder, H. and Kompa, K.-L. (1999) Surface Impact Ionization of Polar-Molecule Clusters through Pickup of Alkali Atoms. Nature, 400, 544-547.
https://doi.org/10.1038/22984
[27]  Gebhardt, C.R., Witte, T. and Kompa, K.-L. (2003) Direct Observation of Charge-Transfer Reactions in Nanoscopic Test Tubes: Self-Ionization in HNO3 Clusters. ChemPhysChem, 4, 308-312.
https://doi.org/10.1002/cphc.200390052
[28]  Inoue, K., Ishiyama, T., Nihonyanagi, S., Yamaguchi, S., Morita, A. and Tahara, T. (2016) Efficient Spectral Diffusion at the Air/Water Interface Revealed by Femtosecond Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy. Journal Physical Chemistry Letters, 7, 1811-1815.
https://doi.org/10.1021/acs.jpclett.6b00701
[29]  Plonus, M.A. (1978) Applied Electromagnetics. McGraw-Hill Book Company, New York.
[30]  Education Development Center, Inc., Newton, Massachusetts, USA (1963, 1964, 1965) Berkeley Physics Course, Vol. 2, Electricity and Magnetism, Chapter 9, Section 9.8.
[31]  Zhou, Z. and Guo, X. (2009) 3D Modelling on Relationships among Intracloud Lightning, Updraft and Liquid Water Content in a Severe Thunderstorm Case. Climate and Environmental Research, 14, 31-44.
[32]  Zhou, Z., Guo, X., Cui, C., Li, X., Xu, G. and Zhao, Y. (2011) A Simulative Study of the Influence of Electric Processes on the Content and the Size Distribution of Graupel in a Severe Thunderstorm. Acta Meteorologica Sinica, 69, 830-846.
[33]  Zhou, Z., Guo, X., Cui, C., Li, X., Fu, D. and Zhao, Y. (2012) Numerical Simulation of Difference of Electric Structure and Discharge of Cloud Flash for Two Severe Thunderstorm Cases. Plateau Meteorology, 31, 810-824.
http://www.gyqx.ac.cn/CN/Y2012/V31/I3/810#4
[34]  Takahashi, T. (1978) Riming Electrification as a Charge Generation Mechanism in Thunderstorms. Journal of the Atmospheric Sciences, 35, 1536-1548.
https://doi.org/10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2
[35]  Chin, S.L., Guo, X., Xu, H., Kong, F., Xia, A., Zhao, H., Song, D., Wang, T.-J., Li, G., Du, S., Ju, J., Sun, H., Liu, J., Li, R. and Xu, Z. (2019) An Attempt to Explain Rain Gush Formation: The Ionic Wind Approach. Plasma Research Express, 1, Article ID: 035013.
https://doi.org/10.1088/2516-1067/ab41e1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133