全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于干预SARIMA模型对疫情后民航客运量的预测
Prediction of Civil Aviation Passenger Traffic after the Epidemic Based on the Intervention SARIMA Model

DOI: 10.12677/SA.2023.124105, PP. 1020-1033

Keywords: 民航客运量预测,疫情干预分析,SARIMA模型
Civil Aviation Passenger Traffic Forecasting
, Epidemic Intervention Analysis, SARIMA Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

民航客运量不仅是交通运输部门确定合理交通设施规模的基础,同时也是保障机场设施高效率利用的前提。因此,对疫情后民航客运量展开科学预测显得尤为重要。针对现阶段对客运量预测中未能定量考虑到新冠疫情对客运量影响的研究缺口,本文在建立SARIMA(1,1,1) × (0,1,1)12模型对未发生疫情下我国民航客运量展开预测的基础上,运用干预分析方法定量衡量新冠疫情对民航客运量的影响,进而对疫情后民航客运量展开预测。结果表明,相比于单一SARIMA模型,干预SARIMA模型对疫情后民航客运量短期预测效果表现良好,后续可采用类似干预分析方法将经济状况、政策变化、航空公司策略等事件考虑进来,以更全面分析和预测民航客运量的变化。
Civil aviation passenger traffic is not only the basis for the transportation sector to determine the reasonable scale of transportation facilities, but also a prerequisite to ensure the efficient use of airport facilities. Therefore, it is particularly important to make scientific forecasts of civil aviation passenger traffic after the epidemic. Based on the SARIMA(1,1,1) × (0,1,1)12 model, this paper uses intervention analysis to quantitatively measure the impact of the new epidemic on China’s civil aviation passenger traffic, and then forecast the post-epidemic civil aviation passenger traffic, in order to address the gap that the current passenger traffic forecast does not quantitatively take into account the impact of the new epidemic. The results show that the intervention SARIMA model is effective in predicting passenger traffic in China after the epidemic. The results show that compared with the single SARIMA model, the intervention SARIMA model performs well in the short-term prediction of civil aviation passenger traffic after the epidemic, and the intervention analysis method can be similarly used to take into account the economic situation, policy changes, airline strategies and other events in order to analyze and predict the changes in civil aviation passenger traffic more comprehensively.

References

[1]  陈文华, 边浩毅, 王怡民, 等. 基于ARIMA模型的公路客运量预测[J]. 重庆工商大学学报(西部论坛), 2006(5): 95-97.
[2]  郝军章, 崔玉杰, 韩江雪. 基于SARIMA模型在我国铁路客运量中的预测[J]. 数学的实践与认识, 2015, 45(18): 95-104.
[3]  赵芳卉, 陈琳, 李冬青. 基于SARIMA-GARCH模型的民航客运量研究[J]. 统计与管理, 2021, 36(2): 17-24.
https://doi.org/10.16722/j.issn.1674-537x.2021.02.003
[4]  李思如. SARIMA模型与LSTM神经网络的航空客运量的预测比较[J]. 河南科技, 2021, 40(36): 18-21.
[5]  郭猛. 基于组合模型的北京民航客运量预测研究[D]: [硕士学位论文]. 石家庄: 河北经贸大学, 2020.
https://doi.org/10.27106/d.cnki.ghbju.2020.000510
[6]  陈宗楠. 基于组合预测研究新冠疫情对民航客运量的影响[J]. 电脑知识与技术, 2023, 19(3): 16-18.
https://doi.org/10.14004/j.cnki.ckt.2023.0148
[7]  刘昶, 吴君华, 张凤娇, 等. 基于ARIMA-BP组合模型的城市公交客运量预测[J]. 智能计算机与应用, 2022, 12(7): 80-83+89.
[8]  何桂烨. 新冠疫情对黄金期货价格的干预影响研究[J]. 中国市场, 2021(34): 44-46.
https://doi.org/10.13939/j.cnki.zgsc.2021.34.044
[9]  汪志红. 突发事件对我国铁路客运量的干预特征研究[J]. 铁道运输与经济, 2022, 44(1): 44-51.
https://doi.org/10.16668/j.cnki.issn.1003-1421.2022.01.07
[10]  王鑫, 肖枝洪. 基于干预模型与BP神经网络集成的GDP预测[J]. 统计与决策, 2012(20): 141-144.
https://doi.org/10.13546/j.cnki.tjyjc.2012.20.039
[11]  冯文权, 蔡基栋. 干预分析模型及其应用[J]. 武汉大学学报(自然科学版), 1994(6): 29-35.
[12]  高旭, 李兴东. 干预分析模型在时间序列中的应用[J]. 科学技术创新, 2021(29): 26-28.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133