全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Preparation and Investigation of Mechanical and Physical Properties of Flax/Glass Fabric Reinforced Polymer Hybrid Composites

DOI: 10.4236/jtst.2023.93011, PP. 165-182

Keywords: Flax-Glass Fabric Reinforced Composites, Mechanical Properties, SEM, TGA, Polyester Resin

Full-Text   Cite this paper   Add to My Lib

Abstract:

Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that is highly consumed in reinforced composites for its superior mechanical strength. As opposed to that, flax obtained from flax stalks can be used as an alternative reinforcing material with synthetic fibers to minimize manmade fiber consumption. Hence, this research work addresses a few flax/glass-reinforced hybrid composites by using a thermoset polyester matrix. Here, six categories of samples are made, like neat flax, neat glass, and flax/glass fabric reinforced hybrid composite, followed by different stacking layer sequences and hand layout techniques during processing. Afterwards, the mechanical behavior, thermal stability, morphological behavior, and water absorption of hybrid samples were investigated. Among the developed samples, neat glass (NG) composite exhibits superior mechanical properties, while neat flax (NF) shows the lowest result. It is apparent that the mechanical properties and thermal stability of hybrid samples are in between NF and NG because, by adding glass with flax fabric, the strength of hybrid samples is increased. Moreover, it is noticeable that, due to multiple stacking layers of flax and glass, hybrid 3 and hybrid 4 show better strength than consecutive single stacking layers in hybrid 1 and hybrid 2. Among all hybrid composites, the H4 shows comparatively better mechanical and thermal properties due to having the glass layers on the outermost surface. In summary, this research work demonstrated the feasibility of flax fabric with glass fabric as a reinforced hybrid composite that can be used in automobile inner bodies, household furnishing, and home interior decoration.

References

[1]  Joshi, S.V., Drzal, L.T., Mohanty, A.K. and Arora, S. (2004) Are Natural Fiber Composites Environmentally Superior to Glass Fiber Reinforced Composites? Composites Part A: Applied Science and Manufacturing, 35, 371-376.
https://doi.org/10.1016/j.compositesa.2003.09.016
[2]  Faruk, O., Bledzki, A.K., Fink, H.P. and Sain, M. (2012) Biocomposites Reinforced with Natural Fibers: 2000-2010. Progress in Polymer Science, 37, 1552-1596.
https://doi.org/10.1016/j.progpolymsci.2012.04.003
[3]  Saxena, M., Pappu, A., Sharma, A., Haque, R. and Wankhede, S. (2011) Composite Materials from Natural Resources: Recent Trends and Future Potentials. In: Pavla Tesinova, Ed., Advances in Composite Materials: Analysis of Natural and Man-Made Materials, IntechOpen, London.
https://doi.org/10.5772/18264
[4]  Barreto, A.C.H., Rosa, D.S., Fechine, P.B.A. and Mazzetto, S.E. (2011) Properties of Sisal Fibers Treated by Alkali Solution and Their Application into Cardanol-Based Biocomposites. Composites Part A: Applied Science and Manufacturing, 42, 492-500.
https://doi.org/10.1016/j.compositesa.2011.01.008
[5]  Behera, A.K., Avancha, S., Basak, R.K., Sen, R. and Adhikari, B. (2012) Fabrication and Characterizations of Biodegradable Jute Reinforced Soy Based Green Composites. Carbohydrate Polymers, 88, 329-335.
https://doi.org/10.1016/j.carbpol.2011.12.023
[6]  Plackett, D., Andersen, T.L., Pedersen, W.B. and Nielsen, L. (2003) Biodegradable Composites Based on L-Polylactide and Jute Fibres. Composites Science and Technology, 63, 1287-1296.
https://doi.org/10.1016/S0266-3538(03)00100-3
[7]  Liang, S., Gning, P.B. and Guillaumat, L. (2012) A Comparative Study of Fatigue Behaviour of Flax/Epoxy and Glass/Epoxy Composites. Composites Science and Technology, 72, 535-543.
https://doi.org/10.1016/j.compscitech.2012.01.011
[8]  Andersons, J. and Joffe, R. (2011) Estimation of the Tensile Strength of an Oriented Flax Fiber-Reinforced Polymer Composite. Composites Part A: Applied Science and Manufacturing, 42, 1229-1235.
https://doi.org/10.1016/j.compositesa.2011.05.005
[9]  Davoodi, M.M., Sapuan, S.M., Ahmad, D., Ali, A., Khalina, A. and Jonoobi, M. (2010) Mechanical Properties of Hybrid Kenaf/Glass Reinforced Epoxy Composite for Passenger Car Bumper Beam. Materials & Design, 31, 4927-4932.
https://doi.org/10.1016/j.matdes.2010.05.021
[10]  Li, Y., Mai, Y.W. and Ye, L. (2000) Sisal Fibre and Its Composites: A Review of Recent Developments. Composites Science and Technology, 60, 2037-2055.
https://doi.org/10.1016/S0266-3538(00)00101-9
[11]  Dittenber, D.B. and GangaRao, H.V.S. (2012) Critical Review of Recent Publications on Use of Natural Composites in Infrastructure. Composites Part A: Applied Science and Manufacturing, 43, 1419-1429.
https://doi.org/10.1016/j.compositesa.2011.11.019
[12]  Syduzzaman, M., Al Faruque, M.A., Bilisik, K. and Naebe, M. (2020) Plant-Based Natural Fibre Reinforced Composites: A Review on Fabrication, Properties and Applications. Coatings, 10, Article 973.
https://doi.org/10.3390/coatings10100973
[13]  Labib, W.A. (2022) Plant-Based Fibres in Cement Composites: A Conceptual Framework. Journal of Engineered Fibers and Fabrics, 17.
https://doi.org/10.1177/15589250221078922
[14]  Shesan, O.J., Stephen, A.C., Chioma, A.G., Neerish, R. and Rotimi, S.E. (2019) Improving the Mechanical Properties of Natural Fiber Composites for Structural and Biomedical Applications. Renewable and Sustainable Composites, In: Pereira, A.B. and Fernandes, F.A.O., Eds., Renewable and Sustainable Composites, IntechOpen, London, 1-27.
https://doi.org/10.5772/intechopen.85252
[15]  Karthi, N., Kumaresan, K., Sathish, S., Gokulkumar, S., Prabhu, L. and Vigneshkumar, N. (2020) An Overview: Natural Fiber Reinforced Hybrid Composites, Chemical Treatments and Application Areas. Materials Today: Proceedings, 27, 2828-2834.
https://doi.org/10.1016/j.matpr.2020.01.011
[16]  Mohanty, A.K., Khan, M.A. and Hinrichsen, G. (2000) Surface Modification of Jute and Its Influence on Performance of Biodegradable Jute-Fabric/Biopol Composites. Composites Science and Technology, 60, 1115-1124.
https://doi.org/10.1016/S0266-3538(00)00012-9
[17]  Akter, M., Uddin, M.H. and Anik, H.R. (2023) Plant Fiber-Reinforced Polymer Composites: A Review on Modification, Fabrication, Properties, and Applications. Polymer Bulletin.
https://doi.org/10.1007/s00289-023-04733-5
[18]  Xie, Y., Hill, C.A.S., Xiao, Z., Militz, H. and Mai, C. (2010) Silane Coupling Agents Used for Natural Fiber/Polymer Composites: A Review. Composites Part A: Applied Science and Manufacturing, 41, 806-819.
https://doi.org/10.1016/j.compositesa.2010.03.005
[19]  Jawaid, M. and Khalil, H.P.S.A. (2011) Cellulosic/Synthetic Fibre Reinforced Polymer Hybrid Composites: A Review. Carbohydrate Polymers, 86, 1-18.
https://doi.org/10.1016/j.carbpol.2011.04.043
[20]  Idicula, M., Joseph, K. and Thomas, S. (2010) Mechanical Performance of Short Banana/Sisal Hybrid Fiber Reinforced Polyester Composites. Journal of Reinforced Plastics and Composites, 29, 12-29.
https://doi.org/10.1177/0731684408095033
[21]  Wang, A., Liu, X., Yue, Q. and Xian, G. (2023) Hydrothermal Durability of Unidirectional Flax/Carbon Fiber Hybrid Composite Plates. Journal of Materials Research and Technology, 22, 2043-2061.
https://doi.org/10.1016/j.jmrt.2022.12.021
[22]  Thomason, J. and Xypolias, G. (2023) Hydrothermal Ageing of Glass Fibre Reinforced Vinyl Ester Composites: A Review. Polymers, 15, Article 835.
https://doi.org/10.3390/polym15040835
[23]  Velmurugan, R. and Manikandan, V. (2007) Mechanical Properties of Palmyra/Glass Fiber Hybrid Composites. Composites Part A: Applied Science and Manufacturing, 38, 2216-2226.
https://doi.org/10.1016/j.compositesa.2007.06.006
[24]  Ramesh, M., Palanikumar, K. and Reddy, K.H. (2013) Comparative Evaluation on Properties of Hybrid Glass Fiber-Sisal/Jute Reinforced Epoxy Composites. Procedia Engineering, 51, 745-750.
https://doi.org/10.1016/j.proeng.2013.01.106
[25]  Khalid, M.Y., Arif, Z.U., Sheikh, M.F. and Nasir, M.A. (2021) Mechanical Characterization of Glass and Jute Fiber-Based Hybrid Composites Fabricated through Compression Molding Technique. International Journal of Material Forming, 14, 1085-1095.
https://doi.org/10.1007/s12289-021-01624-w
[26]  Zin, M.H., Abdan, K. and Norizan, M.N. (2019) The Effect of Different Fiber Loading on Flexural and Thermal Properties of Banana/Pineapple Leaf (PALF)/Glass Hybrid Composite. In: Jawaid, M., Thariq, M. and Saba, N., Eds., Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, Elsevier, Amsterdam, 1-17.
https://doi.org/10.1016/B978-0-08-102291-7.00001-0
[27]  Morye, S.S. and Wool, R.P. (2005) Mechanical Properties of Glass/Flax Hybrid Composites Based on a Novel Modified Soybean Oil Matrix Material. Polymer Composites, 26, 407-416.
https://doi.org/10.1002/pc.20099
[28]  Jarukumjorn, K. and Suppakarn, N. (2009) Effect of Glass Fiber Hybridization on Properties of Sisal Fiber-Polypropylene Composites. Composites Part B: Engineering, 40, 623-627.
https://doi.org/10.1016/j.compositesb.2009.04.007
[29]  Wambua, P., Ivens, J. and Verpoest, I. (2003) Natural Fibres: Can They Replace Glass in Fibre Reinforced Plastics? Composites Science and Technology, 63, 1259-1264.
https://doi.org/10.1016/S0266-3538(03)00096-4
[30]  Sivakumar, S., Vignesh, V., Arasu, I.V., Venkatesan, G., Rabi, B.R.M. and Khan, M.A. (2021) Experimental Investigation on Tensile and Flexural Properties of Randomly Oriented Treated Palmyra Fibre Reinforced Polyester Composites. Materials Today: Proceedings, 46, 7556-7560.
https://doi.org/10.1016/j.matpr.2021.01.511
[31]  Prasath, K.A., Arumugaprabu, V., Amuthakkannan, P. and Manikandan, V. (2019) Performance Studies on Flax Fiber Reinforced Polymer Composites—An Effect on Fiber Orientation. International Journal of Engineering and Advanced Technology (IJEAT), 9, 44-47.
https://doi.org/10.35940/ijeat.A1085.1291S419
[32]  Meenakshi, C.M. and Krishnamoorthy, A. (2018) Preparation and Mechanical Characterization of Flax and Glass Fiber Reinforced Polyester Hybrid Composite Laminate by Hand Lay-Up Method. Materials Today: Proceedings, 5, 26934-26940.
https://doi.org/10.1016/j.matpr.2018.08.181
[33]  Shah, D.U., Schubel, P.J. and Clifford, M.J. (2013) Can Flax Replace E-Glass in Structural Composites? A Small Wind Turbine Blade Case Study. Composites Part B: Engineering, 52, 172-181.
https://doi.org/10.1016/j.compositesb.2013.04.027
[34]  Mohammed, L., Ansari, M.N.M., Pua, G., Jawaid, M. and Islam, M.S. (2015) A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. International Journal of Polymer Science, 2015, Article ID: 243947.
https://doi.org/10.1155/2015/243947
[35]  Vaisanen, T., Haapala, A., Lappalainen, R. and Tomppo, L. (2016) Utilization of Agricultural and Forest Industry Waste and Residues in Natural Fiber-poLYmer Composites: A Review. Waste Management, 54, 62-73.
https://doi.org/10.1016/j.wasman.2016.04.037
[36]  Asim, M., Jawaid, M., Saba, N., Nasir, M. and Sultan, M.T.H. (2017) Processing of Hybrid Polymer Composites—A Review. In: Thakur, V.K., Thakur, M.K. and Gupta, R.K., Eds., Hybrid Polymer Composite Materials, Woodhead Publishing, Sawston, Cambridge, 1-22.
https://doi.org/10.1016/B978-0-08-100789-1.00001-0
[37]  Raquez, J.M., Deléglise, M., Lacrampe, M.F. and Krawczak, P. (2010) Thermosetting (Bio) Materials Derived from Renewable Resources: A Critical Review. Progress in Polymer Science, 35, 487-509.
https://doi.org/10.1016/j.progpolymsci.2010.01.001
[38]  Nasir, M., Gupta, A., Beg, M.D.H., Chua, G.K. and Asim, M. (2014) Laccase Application in Medium Density Fibreboard to Prepare a Bio-Composite. RSC Advances, 4, 11520-11527.
https://doi.org/10.1039/C3RA40593A
[39]  Shah, D.U., Porter, D. and Vollrath, F. (2014) Can Silk Become an Effective Reinforcing Fibre? A Property Comparison with Flax and Glass Reinforced Composites. Composites Science and Technology, 101, 173-183.
https://doi.org/10.1016/j.compscitech.2014.07.015
[40]  Ramesh, M., Sudharsan, P. and Palanikumar, K. (2015) Processing and Mechanical Property Evaluation of Flax-Glass Fiber Reinforced Polymer Composites. Applied Mechanics and Materials, 766, 144-149.
https://doi.org/10.4028/www.scientific.net/AMM.766-767.144
[41]  dos Reis, J.M.L. and Cardoso, J.L. (2014) Mechanical Properties of Recycled Kraft Paper Residue Polyester Composites. Materials Research, 17, 888-892.
https://doi.org/10.1590/S1516-14392014005000086
[42]  Onal, L. and Adanur, S. (2002) Effect of Stacking Sequence on the Mechanical Properties of Glass-Carbon Hybrid Composites before and after Impact. Journal of Industrial Textiles, 31, 255-271.
https://doi.org/10.1106/152808302028713
[43]  Moudood, A., Rahman, A., Khanlou, H.M., Hall, W., Ochsner, A. and Francucci, G. (2019) Environmental Effects on the Durability and the Mechanical Performance of Flax Fiber/Bio-Epoxy Composites. Composites Part B: Engineering, 171, 284-293.
https://doi.org/10.1016/j.compositesb.2019.05.032
[44]  López, F.A., Martín, M.I., Alguacil, F.J., Rincón, J.M., Centeno, T.A. and Romero, M. (2012) Thermolysis of Fibreglass Polyester Composite and Reutilisation of the Glass Fibre Residue to Obtain a Glass-Ceramic Material. Journal of Analytical and Applied Pyrolysis, 93, 104-112.
https://doi.org/10.1016/j.jaap.2011.10.003
[45]  Bansal, R.K., Mittal, J. and Singh, P. (1989) Thermal Stability and Degradation Studies of Polyester Resins. Journal of Applied Polymer Science, 37, 1901-1908.
https://doi.org/10.1002/app.1989.070370713
[46]  Li, Y., Li, Q. and Ma, H. (2015) The Voids Formation Mechanisms and Their Effects on the Mechanical Properties of Flax Fiber Reinforced Epoxy Composites. Composites Part A: Applied Science and Manufacturing, 72, 40-48.
https://doi.org/10.1016/j.compositesa.2015.01.029
[47]  Sarac, D., Sarac, Y.S., Kulunk, S., Ural, C. and Kulunk, T. (2006) The Effect of Polishing Techniques on the Surface Roughness and Color Change of Composite Resins. The Journal of Prosthetic Dentistry, 96, 33-40.
https://doi.org/10.1016/j.prosdent.2006.04.012

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133