全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Super-Shuffle Product and Cut-Box Coproduct on (0,1)-Matrices

DOI: 10.4236/ojapps.2023.138105, PP. 1326-1335

Keywords: (0,1)-Matrix, Super-Shuffle Product, Cut-Box Coproduct, Graded Algebra, Graded Coalgebra

Full-Text   Cite this paper   Add to My Lib

Abstract:

In 2014, Vargas first defined a super-shuffle product and a cut-box coproduct on permutations. In 2020, Aval, Bergeron and Machacek introduced the super-shuffle product and the cut-box coproduct on labeled simple graphs. In this paper, we generalize the super-shuffle product and the cut-box coproduct from labeled simple graphs to (0,1)-matrices. Then we prove that the vector space spanned by (0,1)-matrices with the super-shuffle product is a graded algebra and with the cut-box coproduct is a graded coalgebra.

References

[1]  Hopf, H. (1964) über die Topologie der Gruppen-Mannigfaltigkeiten und Ihrer Verallgemeinerungen. In: Selecta Heinz Hopf, Springer, Berlin, 119-151.
https://doi.org/10.1007/978-3-662-25046-4_9
[2]  Vargas, Y. (2014) Hopf Algebra of Permutation Pattern Functions. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), Chicago, 29 June-3 July 2014.
https://doi.org/10.46298/dmtcs.2446
[3]  Liu, M. and Li, H. (2021) A Hopf Algebra on Permutations Arising from Super-Shuffle Product. Symmetry, 13, Article No. 1010.
https://doi.org/10.3390/sym13061010
[4]  Aguiar, M. and Sottile, F. (2005) Structure of the Malvenuto-Reutenauer Hopf Algebra of Permutations. Advances in Mathematics, 191, 225-275.
https://doi.org/10.1016/j.aim.2004.03.007
[5]  Zhao, M. and Li, H. (2021) A Pair of Dual Hopf Algebras on Permutations. AIMS Mathematics, 6, 5106-5123.
https://doi.org/10.3934/math.2021302
[6]  Aval, J.C., Bergeron, N. and Machacek, J. (2020) New Invariants for Permutations, Orders and Graphs. Advances in Applied Mathematics, 121, Article ID: 102080.
https://doi.org/10.1016/j.aam.2020.102080
[7]  Dong, J. (2023) Hopf Algebras on Simple Graphs. Shandong Normal University, Jinan.
[8]  Huang, X. and Huang, Q. (2017) On Regular Graphs with Four Distinct Eigenvalues. Linear Algebra and Its Applications, 512, 219-233.
https://doi.org/10.1016/j.laa.2016.09.043
[9]  Cardoso, D. and Rojo, O. (2017) Edge Perturbations on Graphs with Cluster: Adjacency, Laplacian and Signless Laplacian Eigenvalues. Linear Algebra and Its Applications, 512, 113-128.
https://doi.org/10.1016/j.laa.2016.09.031
[10]  Constantin, P. (1991) Combinatorial Matrix Theory. Cambridge University Press, Cambridge.
[11]  Borrero, J.S., Gillen, C. and Prokopyev, O.A. (2016) A Simple Technique to Improve Linearized Reformulations of Fractical (Hyperbolic) 0-1 Programming Problems. Operations Research Letters, 44, 479-486.
https://doi.org/10.1016/j.orl.2016.03.015
[12]  Punnen, A.P., Sripratak, P. and Karapetyan, D. (2015) The Bipartite Unconstrained 0-1 Quadratic Programming Problem: Polynomially Solvable Cases. Discrete Applied Mathematics, 193, 1-10.
https://doi.org/10.1016/j.dam.2015.04.004
[13]  Soylu, B. (2015) Heuristic Approaches for Biobjective Mixed 0-1 Integer Linear Programming Problems. European Journal of Operational Research, 245, 690-703.
https://doi.org/10.1016/j.ejor.2015.04.010
[14]  Zhang, S., Lin, P., Wang, K. and Wu, G. (2016) Construction of Binary Shift Dual Codes. Journal of Jiangxi University of Science and Technology, 37, 74-79. (In Chinese)
https://doi.org/10.13265/j.cnki.jxlgdxxb.2016.01.014
[15]  Dong, J. and Li, H. (2023) A Hopf Algebra of Labeled Simple Graphs. Open Journal of Applied Sciences, 13, 120-135.
https://doi.org/10.4236/ojapps.2023.131011

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133