全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非凸优化问题的两步正则化牛顿法
The Two-Step Regularized Newton Method for Non-Convex Optimization Problems

DOI: 10.12677/AAM.2023.128363, PP. 3651-3664

Keywords: 非凸优化,正则化牛顿法,局部误差界,信赖域
Non-Convex Optimization
, Regularized Newton Method, Local Error Bound, Trust Region

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文提出了非凸的无约束优化问题的一种在信赖域框架下的两步正则化牛顿算法,其在适当条件下证明了该方法具有局部收敛性。在局部误差界的条件下,该方法具有三阶收敛速度。此外我们还进行了数值实验,数值结果显示,与单步正则化牛顿法相比我们有更少的迭代次数更快的迭代速度,说明两步正则化牛顿法比后者更有效。
In this paper, we propose a two-step regularized Newton algorithm for solving non-convex uncon-strained optimization problems within the trust region framework. Under appropriate conditions, we prove that this method possesses local convergence. Under the condition of a local error bound, the method exhibits third-order convergence rate. Additionally, numerical experiments are con-ducted, and the results show that our two-step regularized Newton method outperforms the sin-gle-step regularized Newton method in terms of fewer iterations and faster convergence speed, in-dicating its higher efficiency.

References

[1]  Yamashita, N. and Fukushima, M. (2001) On the Rate of Convergence of the Levenberg-Marquardt Method.
https://doi.org/10.1007/978-3-7091-6217-0_18
[2]  Li, D.H., Fukushima, M., Qi, L., et al. (2004) Regularized Newton Methods for Convex Minimization Problems with Singular Solutions. Computational Optimization and Appli-cations, 28, 131-147.
https://doi.org/10.1023/B:COAP.0000026881.96694.32
[3]  Ueda, K. and Yamashita, N. (2010) Convergence Properties of the Regularized Newton Method for the Unconstrained Nonconvex Optimization. Applied Mathematics & Optimization, 62, 27-46.
https://doi.org/10.1007/s00245-009-9094-9
[4]  Homeier, H.H.H. (2003) A Modified Newton Method for Rootfinding with Cubic Convergence. Journal of Computational and Applied Mathematics, 157, 227-230.
https://doi.org/10.1016/S0377-0427(03)00391-1
[5]  Homeier, H.H.H. (2004) A Modified Newton Method with Cubic Convergence: The Multivariate Case. Journal of Computational and Applied Mathematics, 169, 161-169.
https://doi.org/10.1016/j.cam.2003.12.041
[6]  Zhou, W. and Chen, X. (2013) On the Convergence of a Modified Regularized Newton Method for Convex Optimization with Singular Solutions. Journal of Computational and Applied Mathematics, 239, 179-188.
https://doi.org/10.1016/j.cam.2012.09.030
[7]  Sun, W. and Yuan, Y.X. (2006) Optimization Theory and Methods: Nonlinear Programming. Springer Science & Business Media, Berlin.
[8]  孙继广. 矩阵扰动分析[M]. 北京: 科学出版社, 2001.
[9]  Bogaevski, V.N. and Povzner, A. (1991) Matrix Perturbation Theory. In: Algebraic Methods in Non-linear Perturbation Theory. Springer, New York.
https://doi.org/10.1007/978-1-4612-4438-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133