|
山东省县域碳排放时空格局及影响因素研究
|
Abstract:
论文基于1998~2017年山东省136个县域碳排放数据,采用自然断点法、SLOPE倾值法、空间自相关分析和时空地理加权回归模型,对山东省县域碳排放时空格局及影响因素进行分析。研究表明:1998~2017年寿光市碳排放增长速率最快。山东省县域碳排放在空间上呈现东北高西南低的格局。山东省县域碳排放量呈现为显著的空间集聚现象,从整体上呈现一个上升后下降的趋势。即墨区、胶州市、平度市、莱西市、垦利区、广饶县、莱州市7个城市,存在“高碳锁定”现象。各影响因素具有较强的时空异质性,GDP、产业结构、人口规模和技术水平对各县域碳排放发挥促进作用;城镇化水平和财政投入对不同时期不同县域的碳排放影响不同,就回归系数平均值而言,城镇化水平对碳排放发挥抑制作用,而财政投入对碳排放发挥促进作用。该研究结果从一定程度上可以为山东省制定地区化、差异化、定量化的减排政策提供科学依据,促进山东省乃至全国早日实现碳达峰、碳中和目标。
Based on carbon emission data from 136 counties in Shandong Province from 1998 to 2017, this paper uses natural breakpoint method, SLOPE tilt method, spatial autocorrelation analysis, and GTWR model to analyze the spatiotemporal pattern and influencing factors of carbon emissions in counties in Shandong Province. Research shows that Shouguang City experienced the fastest growth rate of carbon emissions from 1998 to 2017. The carbon emissions of counties in Shandong Province show a spatial pattern of high in the northeast and low in the southwest. The carbon emissions of counties in Shandong Province show a significant spatial agglomeration phenomenon, showing an overall trend of increasing and then decreasing. Seven cities, including Jimo District, Jiaozhou City, Pingdu City, Laixi City, Kenli District, Guangrao County, and Laizhou City, have a phenomenon of “high carbon lock-in”. Each influencing factor has strong spatiotemporal heterogeneity, and GDP, industrial structure, population size, and technological level play a promoting role in promoting carbon emissions in each county; The level of urbanization and financial investment have different impacts on carbon emissions in different counties during different periods. In terms of the average regression coefficient, the level of urbanization plays an inhibitory role in carbon emissions, while financial investment plays a promoting role in carbon emissions. To some extent, the research results can provide a scientific basis for Shandong Province to formulate regionalized, differentiated and quantitative emission reduction policies, and promote Shandong Province and even the whole country to achieve the goal of carbon peak and carbon neutrality as soon as possible.
[1] | Gregg, J.S. (2009) The Temporal and Spatial Distribution of Carbon Dioxide Emissions from Fossil-Fuel Use in North America. Journal of Applied Meteorology and Climatology, 48, 2528-2542. https://doi.org/10.1175/2009JAMC2115.1 |
[2] | 方叶兵, 王礼茂, 牟初夫, 等. 中国石油终端利用碳排放空间分异及影响因素[J]. 资源科学, 2017, 39(12): 2233-2246. |
[3] | 周玄德, 窦文章, 詹庆明, 等. 基于县域单元的湖北省碳排放时空格局演变特征[J]. 测绘通报, 2022(11): 149-156. |
[4] | 莫惠斌, 王少剑. 黄河流域县域碳排放的时空格局演变及空间效应机制[J]. 地理科学, 2021, 41(8): 1324-1335. |
[5] | 关敏捷, 袁艳红, 冉木希, 等. 基于STIRPAT模型的山西省能源碳排放影响因素及峰值预测[J]. 中国煤炭, 2021, 47(9): 48-55. |
[6] | 韩媛媛, 皮荷杰, 时泽楠, 等. 京津冀地区工业CO2排放测度及其影响因素研究[J]. 世界地理研究, 2020, 29(1): 140-147. |
[7] | Wang, S.J. (2019) Examining the Spatial Variations of Determinants of Energy-Related CO2 Emissions in China at the City Level Using Geographically Weighted Regression Mode. Applied Energy, 235, 95-105.
https://doi.org/10.1016/j.apenergy.2018.10.083 |
[8] | 常青, 蔡为民, 谷秀兰, 等. 河南省农业碳排放时空分异、影响因素及趋势预测[J]. 水土保持通报, 2023, 43(1): 367-377. |
[9] | 靳祥锋. 碳排放约束下的区域经济增长机制与对策研究[D]: [博士学位论文]. 天津: 天津大学, 2017. |
[10] | 山东省人民政府. 山东省行政区划[EB/OL].
http://www.shandong.gov.cn/col/col97866/index.html, 2022-12-31. |
[11] | Chen, J.D. (2020) County-Level CO2 Emissions and Sequestration in China during 1997-2017. Scientific Data, 7, 391-391. https://doi.org/10.1038/s41597-020-00736-3 |
[12] | 王玥. 山东省碳排放影响因素分解及趋势预测[D]: [硕士学位论文]. 日照: 曲阜师范大学, 2019. |
[13] | 原嫄, 周洁. 中国省域尺度下产业结构多维度特征及演化对碳排放的影响[J]. 自然资源学报, 2021, 36(12): 3186-3202. |
[14] | 邵红梅. 人口因素对碳排放的影响研究[D]: [博士学位论文]. 武汉: 武汉大学, 2012. |
[15] | 齐昕, 郭薛南. 新兴经济体国家城镇化发展对碳排放影响的比较研究[J]. 生态经济, 2022, 38(3): 101-108. |
[16] | 雷宏, 李智. 技术进步对二氧化碳排放的影响效应研究——基于省级面板门限模型[J]. 中南财经政法大学学报, 2017(3): 58-65. |
[17] | 赵哲, 谭建立. 中国地方财政支出的碳减排效应研究——基于新型城镇化调节效应的实证分析[J]. 财经论丛, 2022(11): 41-50. |
[18] | 李云燕, 张硕. 中国城市碳排放强度时空演变与影响因素的时空异质性[J]. 中国环境科学, 2023(3): 1-16. |
[19] | 刘雪琪, 李波. 碳中和目标下中国农地利用效率的影响因素及时空异质性[J]. 华中农业大学学报, 2023(1): 197-209. |
[20] | Huang, B., et al. (2010) Geographically and Temporally Weighted Regression for Modeling Spatio-Temporal Variation in House Prices. International Journal of Geographical Information Science, 24, 383-401.
https://doi.org/10.1080/13658810802672469 |
[21] | 高辉. 多重共线性的诊断方法[J]. 统计与信息论坛, 2003(1): 73-76. |
[22] | 赵志耘, 杨朝峰. 中国碳排放驱动因素分解分析[J]. 中国软科学, 2012(6): 175-183. |