全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于深度学习的佩戴口罩下的人脸识别
Masked Face Recognition Based on Deep Learning

DOI: 10.12677/CSA.2023.138156, PP. 1576-1587

Keywords: 口罩遮挡下的人脸识别,深度学习,卷积神经网络,ResNet18,LeakyReLU
Face Recognition under Mask Occlusion
, Deep Learning, Convolutional Neural Network, ResNet18, LeakyReLU

Full-Text   Cite this paper   Add to My Lib

Abstract:

深度学习卷积神经网络在图像处理中的应用引起了国内外许多学者的广泛关注。识别和验证有遮挡物下的人脸将是深度学习领域里持续受到关注的课题,我们需要更有效的方法来实现实时佩戴口罩检测和面部识别。从传统的机器学习算法到现在的深度学习卷积神经网络,图像识别效率、图像识别精度和网络训练速度的优化始终都是第一要义。为解决传统神经网络的梯度消失和网络退化问题,本文提到了一种基于改进型激活函数LeakyReLU的ResNet18残差神经网络的口罩遮挡下的人脸识别方法。利用Python语言构建PyTorch框架下的ResNet18残差神经网络模型,训练结果显示,改进型激活函数LeakyReLU在两轮训练后产生的结果比同等训练条件下ReLU函数的识别精确度高,因此,ResNet18卷积神经网络模型较其他人脸遮挡识别方法在识别准确度上有所提升。
The application of deep learning convolutional neural network in image processing has attracted wide attention of many scholars at home and abroad. Recognizing and verifying faces under occlusions will continue to be a hot topic in the field of deep learning. We need more effective methods for real-time mask wearing detection and face recognition. From the traditional machine learning algorithm to the current deep learning convolutional neural network, the optimization of image recognition efficiency, image recognition accuracy and network training speed is always the first essential. In order to solve the problem of gradient disappearance and network degradation of traditional neural network, this paper mentions a ResNet18 residual neural network based on improved activation function LeakyReLU for face recognition under mask occlusion. Python language is used to build a ResNet18 residual neural network model under the PyTorch framework. The training results show that the improved activation function LeakyReLU produces higher recognition accuracy than the ReLU function under the same training conditions after two rounds of training. The ResNet18 convolutional neural network model has improved the recognition accuracy compared with other face occlusion recognition methods.

References

[1]  陈奕文. 基于形态模型关键点的戴口罩人脸识别方法研究[D]: [硕士学位论文]. 重庆: 重庆理工大学, 2022.
[2]  Li, S.Z. and Jain, A.K. (2011) Handbook of Face Recognition. Springer, New York.
[3]  刘嘉. 基于深度学习的图像知识提取技术研究与应用[D]: [硕士学位论文]. 成都: 电子科技大学, 2019.
[4]  张圆圆. 基于深度学习的人类表情识别方法研究[D]: [硕士学位论文]. 长春: 吉林大学, 2020.
[5]  吴思. 基于注意力网络的人群计数方法研究[D]: [硕士学位论文]. 杭州: 杭州电子科技大学, 2021.
[6]  王元辰. 基于U-Net网络的低光照图像增强算法的研究与实现[D]: [硕士学位论文]. 哈尔滨: 黑龙江大学, 2020.
[7]  Kanaka, D.B. and Rajesh, V. (2022) A ResNet Deep Learning Based Facial Recognition Design for Future Multimedia Applications. Computers and Electrical Engi-neering, 104, Article 108384.
https://doi.org/10.1016/j.compeleceng.2022.108384
[8]  Wang, Z.W., Zhang, Y.J., Pan, C.C. and Cui, Z.W. (2022) MMPCANet: An Improved PCANet for Occluded Face Recognition. Applied Sciences, 12, 3144.
https://doi.org/10.3390/app12063144

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133