全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Are Polyploid Species Less Vulnerable to Climate Change? A Simulation Study in North American Crataegus

DOI: 10.4236/ajcc.2023.123017, PP. 359-375

Keywords: Climate Change, Crataegus, Ecoregion, North America, Range Change, Species Distribution Modeling

Full-Text   Cite this paper   Add to My Lib

Abstract:

Understanding the mechanisms underlying plant responses to climate change is an important step toward developing effective mitigation strategies. Polyploidy is an important evolutionary trait that can influence the capacity of plants to adapt to climate change. The environmental flexibility of polyploids suggests their resiliency to climate change, however, such hypotheses have not yet received empirical evidence. To understand how ploidy level may influence response to climate change, we modeled the current and future distribution of 54 Crataegus species under moderate to severe environments and compared the range change between diploids and polyploids. The majority of studied species are predicted to experience considerable range expansion. We found a negative interaction between ploidy and ecoregions in determining the response to climate change. In extreme environments, polyploids are projected to experience a higher range expansion than diploids with climate change, while the opposite is true for moderate environments. The range expansion of Crataegus species can be attributed to their tolerance for a wide range of environmental conditions. Despite the higher tolerance of polyploids to extreme environments, they do not necessarily outperform diploids in moderate environments, which can be attributed to the varying nature of species interactions along a stress gradient.

References

[1]  Barringer, B. (2007). Polyploidy and Self-Fertilization in Flowering Plants. American Journal of Botany, 94, 1527-1533.
https://doi.org/10.3732/ajb.94.9.1527
[2]  Brochmann. C., Brysting, A., Alsos, I., Borgen, L., Grundt, H. H., Schenn, A. C., & Elven, R. (2015). Polyploidy in Arctic Plants. Biological Journal of the Linnean Society, 82, 521-536.
https://doi.org/10.1111/j.1095-8312.2004.00337.x
[3]  Carmak, J. G. (1997). Asynchronous Expression of Duplicate Genes in Angiosperms May Cause Apomixis, Bispory, Tetraspory, and Polyembryony. Biological Journal of the Linnean Society, 16, 51-94.
https://doi.org/10.1111/j.1095-8312.1997.tb01778.x
[4]  Commission for Environmental Cooperation (1997). Ecological Regions of North America: Toward a Common Perspective. Commission for Environmental Cooperation, Montreal, Quebec, Canada.
[5]  Crataegus Species—The Hawthorns (2021).
https://pfaf.org/user/cmspage.aspx?pageid=59#:~:text=Once%20established%20 they%20are%20quite,of%20a%20shelter%2Dbelt%20planting
[6]  Diagne, C., Leroy, B., Vaissière, A. C., Gozlan, R. E., Roiz, D., Jarić, I., Salles, J. M., Bradshaw, C. J. A., & Courchamp, F. (2021). High and Rising Economic Costs of Biological Invasions Worldwide. Nature, 592, 571-576.
https://doi.org/10.1038/s41586-021-03405-6
[7]  Gray, S. B., & Brady, S. M. (2016). Plant Developmental Responses to Climate Change. Developmental Biology, 419, 64-77.
https://doi.org/10.1016/j.ydbio.2016.07.023
[8]  Hahn, M. A., van Kleunen, M., & Müller-Schärer, H. (2012). Increased Phenotypic Plasticity to Climate May Have Boosted the Invasion Success of Polyploid Centaurea stoebe. PLOS ONE, 7, e50284.
https://doi.org/10.1371/journal.pone.0050284
[9]  Herben, T., Suda, J., & Klimešová, J. (2017). Polyploid Species Rely on Vegetative Reproduction More than Diploids: A Re-Examination of the Old Hypothesis. Annals of Botany, 120, 341-349.
https://doi.org/10.1093/aob/mcx009
[10]  Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very High Resolution Interpolated Climate Surfaces for Global Land Areas. International Journal of Climatology, 25, 1965-1978.
https://doi.org/10.1002/joc.1276
[11]  Hijmans, R. J., Gavrilenko, T., Stephenson, S., Bamberg, J., Salas, A., & Spooner D. M. (2007). Geographical and Environmental Range Expansion through Polyploidy in Wild Potatoes (Solanum Section Petota). Global Ecology and Biogeography, 16, 485-495.
https://doi.org/10.1111/j.1466-8238.2007.00308.x
[12]  Johnson. A. L., Govindarajulu, R., & Ashman, T. L. (2014). Bioclimatic Evaluation of Geographical Range in Fragaria (Rosaceae): Consequences of Variation in Breeding System, Ploidy and Species Age. Botanical Journal of the Linnean Society, 176, 99-114.
https://doi.org/10.1111/boj.12190
[13]  Kass, J. M., Vilela, B., Aiello-Lammens, M. E, Muscarella, R., Merow, C., & Anderson, R. P. (2018). Wallace: A Flexible Platform for Reproducible Modeling of Species Niches and Distributions Built for Community Expansion. Methods in Ecology and Evolution, 9, 1151-1156.
https://doi.org/10.1111/2041-210X.12945
[14]  Lawrence, D. M., Oleson, K. W., Flanner, M. G., Fletcher, C. G., Lawrence, P., Levis, S., Swenson, S. C., & Bonan, G. B. (2012). The CCSM4 Land Simulation, 1850-2005: Assessment of Surface Climate and New Capabilities. Journal of Climate, 25, 2240-2260.
https://doi.org/10.1175/JCLI-D-11-00103.1
[15]  Leitch, A. R., & Leitch, I. J. (2008). Genomic Plasticity and the Diversity of Polyploid Plants. Science, 320, 481-483.
https://doi.org/10.1126/science.1153585
[16]  Li, W., Berlyn, G. P., & Ashton, P. M. S. (1996). Polyploids and Their Structural and Physiological Characteristics Relative to Water Deficit in Betula papyrifera (Betulaceae). American Journal of Botany, 83, 15-20.
https://doi.org/10.1002/j.1537-2197.1996.tb13869.x
[17]  Linders, T. E. W., Schaffner, U., Eschen, R., Abebe, A., Choge, S. K., Nigatu, L., Mbaabu, P. R., Shiferaw, H., & Allan, E. (2019). Direct and Indirect Effects of Invasive Species: Biodiversity Loss Is a Major Mechanism by Which an Invasive Tree Affects Ecosystem Functioning. Journal of Ecology, 107, 2660-2672.
https://doi.org/10.1111/1365-2745.13268
[18]  Lowry, E., & Lester, S. E. (2006). The Biogeography of Plant Reproduction: Potential Determinants of Species’ Range Sizes. Journal of Biogeography, 33, 1975-1982.
https://doi.org/10.1111/j.1365-2699.2006.01562.x
[19]  Lu, H., Xue, L., Cheng, J., Yang, X., Xie, H., Song, X., & Qiang, S. (2020). Polyploidization-Driven Differentiation of Freezing Tolerance in Solidago canadensis. Plant, Cell and Environment, 43, 1394-1403.
https://doi.org/10.1111/pce.13745
[20]  Madlung, A. (2013). Polyploidy and Its Effect on Evolutionary Success: Old Questions Revisited with New Tools. Heredity, 110, 99-104.
https://doi.org/10.1038/hdy.2012.79
[21]  Maestre, F. T., Callaway, R. M., Valladares, F., & Lortie, C. J. (2009). Refining the Stress-Gradient Hypothesis for Competition and Facilitation in Plant Communities. Journal of Ecology, 97, 199-205.
https://doi.org/10.1111/j.1365-2745.2008.01476.x
[22]  Martin, S. L, & Husband, B. C. (2009). Influence of Phylogeny and Ploidy on Species Ranges of North American Angiosperms. Journal of Ecology, 97, 913-922.
https://doi.org/10.1111/j.1365-2745.2009.01543.x
[23]  Muscarella, R., Galante, P. J., Soley-Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M., & Anderson, R. P. (2014). ENMeval: An R Package for Conducting Spatially Independent Evaluations and Estimating Optimal Model Complexity for Maxent Ecological Niche Models. Methods in Ecology and Evolution, 5, 1198-1205.
https://doi.org/10.1111/2041-210X.12261
[24]  Naghiloo, S., & Vamosi, J. C. (2021). Correlates of Extinction Vulnerability in Canadian’s Prairie Ecoregion. Biodiversity and Conservation, 30, 2495-2509.
https://doi.org/10.1007/s10531-021-02206-7
[25]  Novikova, P. Y., Hohmann, N., & Van De Peer, Y. (2018). Polyploid Arabidopsis Species Originated around Recent Glaciation Maxima. Current Opinion in Plant Biology, 42, 8-15.
https://doi.org/10.1016/j.pbi.2018.01.005
[26]  Pandit, M. K., Pocock, M. J. O., & Kunin, W. E. (2011). Ploidy Influences Rarity and Invasiveness in Plants. Journal of Ecology, 99, 1108-1115.
https://doi.org/10.1111/j.1365-2745.2011.01838.x
[27]  Phillips, S. B., Aneja, V. P., Kang, D., & Arya, S. P. (2006). Modelling and Analysis of the Atmospheric Nitrogen Deposition in North Carolina. International Journal of Global Environment, 6, 231-252.
https://doi.org/10.1504/IJGENVI.2006.010156
[28]  Rao, S., Tian, Y., Xia, X., Li, Y., & Chen, J. (2020). Chromosome Doubling Mediates Superior Drought Tolerance in Lycium ruthenicum via Abscisic Acid Signaling. Horticulture Research, 7, 40.
https://doi.org/10.1038/s41438-020-0260-1
[29]  Rice, A., Šmarda, P., Novosolov, M., Drori, M., Glick, L., Sabath, N., Meiri, S., Belmaker, J., & Mayrose, I. (2019). The Global Biogeography of Polyploid Plants. Nature Ecology and Evolution, 3, 265-273.
https://doi.org/10.1038/s41559-018-0787-9
[30]  RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston.
http://www.rstudio.com
[31]  Sheth, S. N., Morueta-Holme, N., & Angert, A. L. (2020). Determinants of Geographic Range Size in Plants. New Phytologist, 226, 650-665.
https://doi.org/10.1111/nph.16406
[32]  Sommer, J. H., Kreft, H., Kier, G., Jetz, W., Mutke, J., & Barthlott, W. (2010). Projected Impacts of Climate Change on Regional Capacities for Global Plant Species Richness. Proceedings of the Royal Society B Biological Sciences, 277, 2271-2280.
https://doi.org/10.1098/rspb.2010.0120
[33]  Talent, N., & Dickinson, T. A. (2005). Polyploidy in Crataegus and Mespilus (Rosaceae, Maloideae): Evolutionary Inferences from Flow Cytometry of Nuclear DNA Amounts. Canadian Journal of Botany, 83, 1268-1304.
https://doi.org/10.1139/b05-088
[34]  Talent, N., & Dickinson, T. A. (2007). The Potential for Ploidy Level Increases and Decreases in Crataegus (Rosaceae, Spiraeoideae, Tribe Pyreae ). Canadian Journal of Botany, 85, 570-584.
https://doi.org/10.1139/B07-028
[35]  Te Beest, M., Le Roux, J. J., Richardson, D. M., Brysting, A. K., Suda, J., Kubesová, M., & Pysek, P. (2012). The More the Better? The Role of Polyploidy in Facilitating Plant Invasions. Annals of Botany, 109, 19-45.
https://doi.org/10.1093/aob/mcr277
[36]  Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., Ferreira de Siqueira, M., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., & Williams, S. E. (2004). Extinction Risk from Climate Change. Nature, 427, 145-148.
https://doi.org/10.1038/nature02121
[37]  Thuiller, W., Lavorel, S., Araújo, M. B., & Prentice, I. C. (2005). Climate Change Threats to Plant Diversity in Europe. PNAS, 102, 8245-8250.
https://doi.org/10.1073/pnas.0409902102
[38]  Urban, M. C. (2015). Accelerating Extinction Risk from Climate Change. Science, 348, 571-573.
https://doi.org/10.1126/science.aaa4984
[39]  Van de Peer, Y., Ashman, T. L., Soltis, P. S., & Soltis, D. E. (2021). Polyploidy: An Evolutionary and Ecological Force in Stressful Times. Plant Cell, 33, 11-26.
https://doi.org/10.1093/plcell/koaa015
[40]  Wallingford, P. D., Morelli, T. L., Allen, J. M., Beaury, E. M., Blumenthal, D. M., Bradley, B. A., Dukes, J. S., Early, R., Fusco, E. J., Goldberg, D. E., Ibáñez, I., Laginhas, B. B., Vilà, M., & Sorte, C. J. B. (2020). Adjusting the Lens of Invasion Biology to Focus on the Impacts of Climate-Driven Range Shifts. Nature Climate Chang, 10, 398-405.
https://doi.org/10.1038/s41558-020-0768-2
[41]  Weiskopf, S. R., Rubenstein, M. A., Crozier, L. G., Gaichas, S., Griffis, R., Halofsky, J. E., Hyde, K. J. W., Morelli, T. L., Morisette, J. T., Muñoz, R. C., Pershing, A. J., Peterson, D. L., Poudel, R., Staudinger, M. D., Sutton-Grier, A. E., Thompson, L., Vose, J., Weltzin, J. F., & Whyte, K. P. (2020). Climate Change Effects on Biodiversity, Ecosystems, Ecosystem Services, and Natural Resource Management in the United States. Science of the Total Environment, 733, Article ID: 137782.
https://doi.org/10.1016/j.scitotenv.2020.137782
[42]  Yue, Y., Ren, M., Quan, Y., Lian, M., Piao, X., Wu, S., Zhou, Y., Jin, M., & Gao, R. (2020). Autopolyploidy in Chrysanthemum cv. “Gongju” Improved Cold Tolerance. Plant Molecular Biology Reporter, 38, 655-665.
https://doi.org/10.1007/s11105-020-01225-y
[43]  Zarrei, M., Stefanović, S., & Dickinson, T. A. (2014). Reticulate Evolution in North American Black-Fruited Hawthorns (Crataegus Section Douglasia; Rosaceae): Evidence from Nuclear ITS2 and Plastid Sequences. Annals of Botany, 114, 253-269.
https://doi.org/10.1093/aob/mcu116
[44]  Zozomová, J., Andrea, L., Marek, M., & Španiel, S. (2020). Pleistocene Range Disruption and Postglacial Expansion with Secondary Contacts Explain the Genetic and Cytotype Structure in the Western Balkan Endemic Alyssum austrodalmaticum (Brassicaceae). Plant Systematics and Evolution, 306, Article No. 47.
https://doi.org/10.1007/s00606-020-01677-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133