Seventy-two years of central western United States precipitation data have been analyzed for storms originating 1000 to 3000 km away from four ocean moisture sources: Arctic, North Pacific, South Pacific, and Gulfs of California and Mexico. Precipitation trends were evaluated relative to precipitation phase, precipitation flux, storm track trajectory, and the sea surface temperature (SST) indices Oceanic Niño Index (ONI), and the Pacific Decadal Oscillation (PDO. The lack of correlation between SST indices with precipitation flux was evaluated. The relationships of meteorological, hydrological and snow droughts were evaluated relative to each other, to the climate change-induced temporal shifts in the timing of mountain snowpack decay, and the timing when North Pacific storm tracks shift from crossing to circumventing the Sierra Nevada Range.
References
[1]
Alexander, M. A., Bladé, I., Newman, M., Lanzante, J. R., Lau, N.-C., & Scott, J. D. (2002). The Atmospheric Bridge: The Influence of ENSO Teleconnections on Air-Sea Interaction over the Global Oceans. Journal of Climate, 15, 2205-2231. https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
[2]
Bayr, T., Domeisen, D. I., & Wengel, C. (2019). The Effect of the Equatorial Pacific Cold SST Bias on Simulated ENSO Teleconnections to the North Pacific and California. Climate Dynamics, 53, 3771-3789. https://doi.org/10.1007/s00382-019-04746-9
[3]
Brown, D. P. (2011). Winter Circulation Anomalies in the Western United States Associated with Antecedent and Decadal ENSO Variability. Earth Interactions, 15, 1-12. https://doi.org/10.1175/2010EI334.1
[4]
Cai, W., Santoso, A., Collins, M. et al. (2021). Changing El Niño-Southern Oscillation in a Warming Climate. Nature Reviews Earth & Environment, 2, 628-644. https://doi.org/10.1038/s43017-021-00199-z
[5]
Capotondi, A., Deser, C., Phillips, A. S., Okumura, Y., & Larson, S. M. (2020). ENSO and Pacific Decadal Variability in the Community Earth System Model Version 2. Journal of Advances in Modeling Earth Systems, 12, e2019MS002022. https://doi.org/10.1029/2019MS002022
[6]
Capotondi, A., Wittenberg, A. T., Newman, M., Di Lorenzo, E., Yu, J. Y., Braconnot, P., Cole, J., Dewitte, B., Giese, B., Guilyardi, E., Jin, F.-F., Karnauskas, K., Kirtman, B., Lee, T., Schneider, N., Xue, Y., & Yeh, S.-W. (2015). Understanding ENSO Diversity. Bulletin of the American Meteorological Society, 96, 921-938. https://doi.org/10.1175/BAMS-D-13-00117.1
[7]
Chang, E. K. M., Lee, S., & Swanson, K. L. (2002). Storm Track Dynamics. Journal of Climate, 15, 2163-2183. https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2
[8]
Chen, R., Simpson, I. R., Deser, C., & Wang, B. (2020). Model Biases in the Simulation of the Springtime North Pacific ENSO Teleconnection. Journal of Climate, 33, 9985-10002. https://doi.org/10.1175/JCLI-D-19-1004.1
[9]
Chiodi, A. M., & Harrison, D. E. (2013). El Niño Impacts on Seasonal U.S. Atmospheric Circulation, Temperature, and Precipitation Anomalies: The OLR-Event Perspective. Journal of Climate, 26, 822-837. https://doi.org/10.1175/JCLI-D-12-00097.1
[10]
Connolly, R., Connolly, M., & Soon, W. (2017). Re-Calibration of Arctic Sea Ice Extent Datasets Using Arctic Surface Air Temperature Records. Hydrological Sciences Journal, 62, 1317-1340. https://doi.org/10.1080/02626667.2017.1324974
[11]
Deser, C., Simpson, I. R., McKinnon, K. A., & Phillips, A. S. (2017). The Northern Hemisphere Extratropical Atmospheric Circulation Response to ENSO: How Well Do We Know It and How Do We Evaluate Models Accordingly? Journal of Climate, 30, 5059-5082. https://doi.org/10.1175/JCLI-D-16-0844.1
[12]
Deser, C., Simpson, I. R., Phillips, A. S., & McKinnon, K. A. (2018). How Well Do We Know ENSO’s Climate Impacts over North America, and How Do We Evaluate Models Accordingly? Journal of Climate, 31, 4991-5014. https://doi.org/10.1175/JCLI-D-17-0783.1
[13]
Evans, C. P., Coats, S., Carrillo, C. M., Li, X., Alessi, M. J., Herrera, D. A., Benton, B.N., & Ault, T. R. (2022). Intrinsic Century-Scale Variability in Tropical Pacific Sea Surface Temperatures and their Influence on Western US Hydroclimate. Geophysical Research Letters, 49, e2022GL099770. https://doi.org/10.1029/2022GL099770
[14]
Fetterer, F., Knowles, K., Meier, W., Savoie, M., & Windnagel, A. K. (2002). Sea Ice Index. NSIDC: National Snow and Ice Data Center.
[15]
Forkel, M., & Wutzler, T. (2015). Greenbrown—Land Surface Phenology and Trend Analysis. A Package for the R Software. Version 2.2, 2015-04-15. R-Forge. http://greenbrown.r-forge.r-project.org/
[16]
Friedman, I., Harris, J. M., Smith, G. I., & Johnson, C. A. (2002). Stable Isotope Composition of Waters in the Great Basin, United States 1. Air-Mass Trajectories. Journal of Geophysical Research: Atmospheres, 107, ACL 14-1-ACL 14-14. https://doi.org/10.1029/2001JD000565
[17]
Gan, B., & Wu, L. (2013). Seasonal and Long-Term Coupling between Wintertime Storm Tracks and Sea Surface Temperature in the North Pacific. Journal of Climate, 26, 6123-6136. https://doi.org/10.1175/JCLI-D-12-00724.1
[18]
Garfinkel, C. I., Chen, W., Li, Y., Schwartz, C., Yadav, P., & Domeisen, D. (2022). The Winter North Pacific Teleconnection in Response to ENSO and the MJO in Operational Subseasonal Forecasting Models Is Too Weak. Journal of Climate, 35, 4413-4430. https://doi.org/10.1175/JCLI-D-22-0179.1
[19]
Garfinkel, C. I., Hurwitz, M. M., Waugh, D. W., & Butler, A. H. (2013). Are the Teleconnections of Central Pacific and Eastern Pacific El Niño Distinct in Boreal Wintertime? Climate Dynamics, 41, 1835-1852. https://doi.org/10.1007/s00382-012-1570-2
[20]
Gershunov, A., & Barnett, T. P. (1998). Interdecadal Modulation of ENSO Teleconnections. Bulletin of the American Meteorological Society, 79, 2715-2726. https://doi.org/10.1175/1520-0477(1998)079<2715:IMOET>2.0.CO;2
[21]
Gershunov, A., & Cayan, D. R. (2003). Heavy Daily Precipitation Frequency over the Contiguous United States: Sources of Climatic Variability and Seasonal Predictability. Journal of Climate, 16, 2752-2765. https://doi.org/10.1175/1520-0442(2003)016<2752:HDPFOT>2.0.CO;2
[22]
Gottlieb, A. R., & Mankin, J. S. (2021). Observing, Measuring, and Assessing the Consequences of Snow Drought. Bulletin of the American Meteorological Society, 103, E1041-E1060. https://doi.org/10.1175/BAMS-D-20-0243.1
[23]
Gudmundsson, L., Boulange, J., Do, H. X., Gosling, S. N., Grillakis, M. G., Koutroulis, A. G., Leonard, M., Liu, J., Müller Schmied, H., Papadimitriou, L., Pokhrel, Y., Seneviratne, S. I., Satoh, Y., Thiery, W., Westra, S., Zhang, X., & Zhao, F.(2021). Globally Observed Trends in Mean and Extreme River Flow Attributed to Climate Change. Science, 71, 1159-1162. https://doi.org/10.1126/science.aba3996
[24]
Hamamoto, M., & Yasuda, I. (2021). Synchronized Interdecadal Variations behind Regime Shifts in the Pacific Decadal Oscillation. Journal of Oceanography, 77, 383-392. https://doi.org/10.1007/s10872-021-00592-8
[25]
Harpold, A. A., Dettinger, M., & Rajagopal, S. (2017). Defining Snow Drought and Why It Matters. EOS, 98. https://doi.org/10.1029/2017EO068775
[26]
Haskell, L. (2021). Reservoir Storage Level Drought Statistics. Utah Division of Water Resources.
[27]
Heim Jr., R. R. (2017). A Comparison of the Early Twenty-First Century Drought in the United States to the 1930s and 1950s Drought Episodes. Bulletin of the American Meteorological Society, 98, 2579-2592. https://doi.org/10.1175/BAMS-D-16-0080.1
[28]
Henson, C., Market, P., Lupo, A., & Guinan, P. (2017). ENSO and PDO-Related Climate Variability Impacts on Midwestern United States Crop Yields. International Journal of Biometeorology, 61, 857-867. https://doi.org/10.1007/s00484-016-1263-3
[29]
Houghton, J. G. (1969). Characteristics of Rainfall in the Great Basin. Desert Research Institute, University of Nevada System.
[30]
Hu, Z.-Z., & Huang, B. (2009). Interferential Impact of ENSO and PDO on Dry and Wet Conditions in the U.S. Great Plains. Journal of Climate, 22, 6047-6065. https://doi.org/10.1175/2009JCLI2798.1
[31]
Huning, L. S., & AghaKouchak, A. (2020). Global Snow Drought Hot Spots and Characteristics. Proceedings of the National Academy of Sciences of the United States of America, 117, 19753-19759. https://doi.org/10.1073/pnas.1915921117
[32]
Johnson, N. C., & Kosaka, Y. (2016). The Impact of Eastern Equatorial Pacific Convection on the Diversity of Boreal Winter El Niño Teleconnection Patterns. Climate Dynamics, 47, 3737-3765. https://doi.org/10.1007/s00382-016-3039-1
[33]
Johnstone, J. A., & Mantua, N. J. (2014). Atmospheric Controls on Northeast Pacific Temperature Variability and Change, 1900-2012. Proceedings of the National Academy of Sciences of the United States of America, 111, 14360-14365. https://doi.org/10.1073/pnas.1318371111
[34]
Jong, B. T., Ting, M., & Seager, R. (2016). El Niño’s Impact on California Precipitation: Seasonality, Regionality, and El Niño Intensity. Environmental Research Letters, 11, Article ID: 054021. https://doi.org/10.1088/1748-9326/11/5/054021
[35]
Kwon, M., Yeh, S.-W., Park, Y.-G., & Lee, Y.-K. (2013). Changes in the Linear Relationship of ENSO-PDO under the Global Warming. International Journal of Climatology, 33, 1121-1128. https://doi.org/10.1002/joc.3497
[36]
L’Heureux, M. L., Tippett, M. K., & Barnston, A. G. (2015). Characterizing ENSO Coupled Variability and Its Impact on North American Seasonal Precipitation and Temperature. Journal of Climate, 28, 4231-4245. https://doi.org/10.1175/JCLI-D-14-00508.1
[37]
Lee, S.-K., Lopez, H., Chung, E.-S., DiNezio, P., Yeh, S.-W., & Wittenberg, A. T. (2018). On the Fragile Relationship between El Niño and California Rainfall. Geophysical Research Letters, 45, 907-915. https://doi.org/10.1002/2017GL076197
[38]
Liu, B., Gan, B., Cai, W., Wu, L., Geng, T., Wang, H., Wang, S., Jing, Z., & Jia, F. (2022). Will Increasing Climate Model Resolution Be Beneficial for ENSO Simulation? Geophysical Research Letters, 49, e2021GL096932. https://doi.org/10.1029/2021GL096932
[39]
Lu, J., Chen, G., & Frierson, D. M. (2008). Response of the Zonal Mean Atmospheric Circulation to El Niño versus Global Warming. Journal of Climate, 21, 5835-5851. https://doi.org/10.1175/2008JCLI2200.1
[40]
Maleski, J. J., & Martinez, C. J. (2018). Coupled Impacts of ENSO AMO and PDO on Temperature and Precipitation in the Alabama-Coosa-Tallapoosa and Apalachicola-Chattahoochee-Flint River Basins. International Journal of Climatology, 38, e717-e728. https://doi.org/10.1002/joc.5401
[41]
Mantua, N. J., & Hare, S. R. (2002). The Pacific Decadal Oscillation. Journal of Oceanography, 58, 35-44. https://doi.org/10.1023/A:1015820616384
[42]
Mantura, N. J., & Hare, S. R., (2002). The Pacific-Decadal Oscillation. Journal of Ocean, 58, 35-55.
[43]
McPhaden, M. J., Santoso, A., & Cai, W. (2020). El Niño Southern Oscillation in a Changing Climate. In Geophysical Monograph Series (Vol. 253). John Wiley & Sons. https://doi.org/10.1002/9781119548164
[44]
NASA (2022). Lake Mead Drops to a Record Low. Earth Observatory.
NOAA (2022). What Are El Niño and La Niña. https://oceanservice.noaa.gov/facts/ninonina.html
[49]
NSIDC (2022). Sea Ice Index. National Snow and Ice Data Center.
[50]
Pan, Z., Shi, C., Kumar, S., & Gao, Z. (2017). North Pacific SST Forcing on the Central United States “Warming Hole” as Simulated in CMIP5 Coupled Historical and Uncoupled AMIP Experiments. Atmosphere-Ocean, 55, 57-77. https://doi.org/10.1080/07055900.2016.1261690
[51]
Pavia, E. G., Graef, F., & Fuentes-Franco, R. (2016). Recent ENSO-PDO Precipitation Relationships in the Mediterranean California Border Region. Atmospheric Science Letters, 17, 280-285. https://doi.org/10.1002/asl.656
[52]
Pavia, E. G., Graef, F., & Reyes, J. (2006). PDO-ENSO Effects in the Climate of Mexico. Journal of Climate, 19, 6433-6438. https://doi.org/10.1175/JCLI4045.1
[53]
Pegion, K., Becker, E. J., & Kirtman, B. P. (2022). Understanding Predictability of Daily Southeast US Precipitation Using Explainable Machine Learning. Artificial Intelligence for the Earth Systems, 1, e220011. https://doi.org/10.1175/AIES-D-22-0011.1
[54]
Rohli, R. V., Snedden, G. A., Martin, E. R., & DeLong, K. L. (2022). Impacts of Ocean-Atmosphere Teleconnection Patterns on the South-Central United States. Frontiers in Earth Science, 10, Article 934654. https://doi.org/10.3389/feart.2022.934654
[55]
Schoennagel, T., Veblen, T. T., Romme, W. H., Sibold, J. S., & Cook, E. R. (2005). ENSO and PDO Variability Affect Drought-Induced Fire Occurrence in Rocky Mountain Subalpine Forests. Ecological Applications, 15, 2000-2014. https://doi.org/10.1890/04-1579
[56]
Scott, M. (2022). 2020 Arctic Air Temperatures Continue a Long-Term Warming Streak. NOAA.
[57]
Seager, R., Naik, N., Ting, M., Cane, M.A., Harnik, N., & Kushnir, Y. (2010). Adjustment of the Atmospheric Circulation to Tropical Pacific SST Anomalies: Variability of Transient Eddy Propagation in the Pacific-North America Sector. Quarterly Journal of the Royal Meteorological Society, 136, 277-296. https://doi.org/10.1002/qj.588
[58]
Smith, K., Strong, C., & Wang, S. Y. (2015). Connectivity between Historical Great Basin Precipitation and Pacific Ocean Variability: A CMIP5 Model Evaluation. Journal of Climate, 28, 6096-6112. https://doi.org/10.1175/JCLI-D-14-00488.1
[59]
SNOTEL (2022). Natural Resources Conservation Service National Water and Climate Center—Monthly Snow Data. https://wcc.sc.egov.usda.gov/nwcc/rgrpt?report=snowmonth&state=UT
[60]
Song, S. Y., Yeh, S. W., & Jo, H. S. (2021). Changes in the Characteristics of the North Pacific Jet as a Conduit for US Surface Air Temperature in Boreal Winter across the Late 1990s. Journal of Climate, 34, 6841-6853. https://doi.org/10.1175/JCLI-D-20-0353.1
[61]
Stahle, D. W. (2020). Anthropogenic Megadrought. Science, 368, 238-239. https://doi.org/10.1126/science.abb6902
[62]
Sung, M.-K., Kim, B.-M., Baek, E.-H., Lim, Y.-K., & Kim, S.-J. (2016). Arctic-North Pacific Coupled Impacts on the Late Autumn Cold in North America. Environmental Research Letters, 11, 084016. https://doi.org/10.1088/1748-9326/11/8/084016
[63]
Takahashi, K., Aliaga-Nestares, V., Avalos, G., Bouchon, M., Castro, A., Cruzado, L., & Quispe, N. (2018). The 2017 Coastal El Niño [State of the Climate in 2017]. Bulletin of American Meteorological Society, 99, S210-S211.
USGS (2022). National Water Information System. https://waterdata.usgs.gov/ut/nwis/rt
[66]
USGS (2023). Atmospheric Warming, Loss of Snow Cover, and Declining Colorado River Flow. https://www.usgs.gov/mission-areas/water-resources/science/atmospheric-warming-loss-snow-cover-and-declining-colorado
[67]
Wang, F., Liu, Z., & Notaro, M. (2013). Extracting the Dominant SST Modes Impacting North America’s Observed Climate. Journal of Climate, 26, 5434-5452. https://doi.org/10.1175/JCLI-D-12-00583.1
[68]
Wang, S.-Y., Gillies, R. R., & Reichler, T. (2012). Multidecadal Drought Cycles in the Great Basin Recorded by the Great Salt Lake: Modulation from a Transition-Phase Teleconnection. Journal of Climate, 25, 1711-1721. https://doi.org/10.1175/2011JCLI4225.1
[69]
Wise, E. K. (2010). Spatiotemporal Variability of the Precipitation Dipole Transition Zone in the Western United States. Geophysical Research Letters, 37, Article No. L07706. https://doi.org/10.1029/2009GL042193
[70]
WRCC (2021). Welcome to SC ACIS Version 2. http://scacis.rcc-acis.org
[71]
Yeh, S.-W., Wang, G., Cai, W., & Park, R. J. (2022). Diversity of ENSO-Related Surface Temperature Response in Future Projection in CMIP6 Climate Models: Climate Change Scenario versus ENSO Intensity. Geophysical Research Letters, 49, e2021GL096135. https://doi.org/10.1029/2021GL096135
[72]
Yu, J.-Y., Zou, Y., Kim, S. T., & Lee, T. (2012). The changing Impact of El Niño on US Winter Temperatures. Geophysical Research Letters, 39, Article No. L15702. https://doi.org/10.1029/2012GL052483
[73]
Zhang, P., & Wu, Z. (2021). Reexamining the Connection of El Niño and North American Winter Climate. International Journal of Climatology, 41, 6133-6144. https://doi.org/10.1002/joc.7204