全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Smart Microcavity on the Tip of Multi-Core Optical Fiber for Gas Sensing

DOI: 10.4236/opj.2023.137016, PP. 178-187

Keywords: WGM Optical Microcavities, Dual Coupled Microcavity, Bonding and Anti-Bonding Mode, Organic Gas Sensing

Full-Text   Cite this paper   Add to My Lib

Abstract:

We designed and fabricated a smart microcavity sensor with a vertically coupled structure on the end face of a multi-core fiber using two-photon lithography technology. The influence of gap in vertical coupling structure on the resonance characteristics of bonding and anti-bonding modes in the transmission spectrum was studied through simulation and experiments. The results indicate that the bonding and anti-bonding modes generated by the vertical coupling of the two microcavities, as well as the changes in the radius and refractive index of the micro-toroid, and the distance between the microcavities caused by the absorption of vapor during the gas sensing process, exhibit different wavelength shifts for the two resonant modes. Smart microcavity sensors exhibit sensitivity and sensing characteristics.

References

[1]  Xiong, Y. and Xu, F. (2020) Multifunctional Integration on Optical Fiber Tips: Challenges and Opportunities. Advanced Photonics, 2, No. 6. https://doi.org/10.1117/1.AP.2.6.064001
[2]  Vaiano, P., Carotenuto, B., Pisco, M., et al. (2016) Lab on Fiber Technology for Biological Sensing Applications. Laser & Photonics Reviews, 10, 858. https://doi.org/10.1002/lpor.201670066
[3]  Qu, J., Kadic, M., Naber, A., et al. (2017) Micro-Structured Two-Component 3D Metamaterials with Negative Thermal-Expansion Coefficient from Positive Constituents. Scientific Reports, 7, Article Number: 40643. https://doi.org/10.1038/srep40643
[4]  Chen, Y.G., Tang, S.K., Zhang, Y.Q., et al. (2010) Zhihengliuella salsuginis sp. nov. a Moderately Halophilic Actinobacterium from a Subterranean Brine. International Journal of Systematic & Evolutionary Microbiology, 14, 397-402. https://doi.org/10.1007/s00792-010-0317-4
[5]  Principe, M., Consales, M., Micco, A., et al. (2017) Optical Fiber Meta-Tips. Light: Science & Applications, 6, e16226. https://doi.org/10.1038/lsa.2016.226
[6]  Hahn, V., Kalt, S., Sridharan, G.M., et al. (2018) Polarizing Beam Splitter Integrated onto an Optical Fiber Facet. Optics Express, 26, 33148-33157. https://doi.org/10.1364/OE.26.033148
[7]  Xu, Q., Almeida, V.R., Panepucci, R.R., et al. (2004) Experimental Demonstration of Guiding and Confining Light in Nanometer-Size Low-Refractive-Index Material. Optics Letters, 29, 1626-1628. https://doi.org/10.1364/OL.29.001626
[8]  Wiederhecker, G.S., Chen, L., Gondarenko, A., et al. (2009) Controlling Photonic Structures Using Optical Forces. Nature, 462, 633-636. https://doi.org/10.1038/nature08584
[9]  Lee, S., Eom, S.C., Chang, J.S., et al. (2010) Label-Free Optical Biosensing Using a Horizontal Air-Slot SiNx Microdisk Resonator. Optics Express, 18, 20638-20644. https://doi.org/10.1364/OE.18.020638
[10]  Zheng, Y., Fang, Z., Liu, S., et al. (2019) High-Q Exterior Whispering-Gallery Modes in a Double-Layer Crystalline Microdisk Resonator. Physical Review Letters, 122, Article ID: 253902. https://doi.org/10.1103/PhysRevLett.122.253902
[11]  Xue, X., Zheng, X. and Zhou, B. (2019) Super-Efficient Temporal Solitons in Mutually Coupled Optical Cavities. Nature Photonics, 13, 616-622. https://doi.org/10.1038/s41566-019-0436-0
[12]  Foreman, M.R., Swaim, J.D. and Vollmer, F. (2015) Whispering Gallery Mode Sensors. Adv Opt Photonics, 7, 168-240. https://doi.org/10.1364/AOP.7.000168
[13]  Ilchenko, V.S., Gorodetsky, M.L., Yao, X.S., et al. (2000) Microtorus: A High Finesse Microcavity with Whispering-Gallery Modes. Optics Letters, 26, 256-258. https://doi.org/10.1364/OL.26.000256
[14]  Armani, D.K., Kippenberg, T.J., Spillane, S.M., et al. (2003) Ultra-High-Q Toroid Microcavity on a Chip. Nature, 421, 925-928. https://doi.org/10.1038/nature01371
[15]  Zhan, Y., Liu, Q., Feng, S., et al. (2020) Photonic Molecules Stacked on Multicore Optical Fiber for Vapor Sensing. Applied Physics Letters, 117, Article ID: 171107. https://doi.org/10.1063/5.0025261
[16]  Hippler, M., Blasco, E., Qu, J., et al. (2019) Controlling the Shape of 3D Microstructures by Temperature and Light. Nature Communications, 10, 232. https://doi.org/10.1038/s41467-018-08175-w
[17]  Ovsianikov, A., Ostendorf, A. and Chichkov, B.N. (2007) Three-Dimensional Photofabrication with Femtosecond Lasers for Applications in Photonics and Biomedicine. Applied Surface Science, 253, 6599-6602. https://doi.org/10.1016/j.apsusc.2007.01.058
[18]  Maruo, S., Nakamura, O. and Kawata, S. (1997) Three-Dimensional Microfabrication with Two-Photon Absorbed Photopolymerization. Optics Letters, 22, 132-134. https://doi.org/10.1364/OL.22.000132
[19]  Lafratta, C.N., Fourkas, J.T., Baldacchini, T., et al. (2007) Multiphoton Fabrication. ChemInform, 38, No. 45. https://doi.org/10.1002/chin.200745266
[20]  Mehrabani, S., Kwong, P., Gupta, M., et al. (2013) Hybrid Microcavity Humidity Sensor. Applied Physics Letters, 102, Article ID: 241101. https://doi.org/10.1063/1.4811265

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133