全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于趋势性时间序列的全国碳排放量预测研究
Research on National Carbon Emission Forecasting Based on Trend Time Series

DOI: 10.12677/ORF.2023.134389, PP. 3870-3881

Keywords: 碳排放,时间序列,LSTM模型,SARIMA模型,SVR模型
Carbon Emissions
, Time Series, LSTM Model, SARIMA Model, SVR Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据最新数据和趋势分析,中国碳排放量一直处于持续增长的形势,尽管中国政府已经采取推广清洁能源、加强能源效率、推动碳交易市场建设等一系列措施以达到节能减排目的,但中国碳排放量仍然面临诸多问题。因此本文基于2019年1月至2023年3月的1551条日频数据,利用SARIMA、LSTM以及SVR等模型综合考虑时间序列的趋势性,对比分析了不同模型对于碳排放数据的预测效果,结果表明SARIMA模型对于碳排放数据的预测效果优于其余两个模型。
According to the latest data and trend analysis, China’s carbon emissions have been in a situation of continuous growth, and although the Chinese government has taken a series of measures to promote clean energy, strengthen energy efficiency, and promote the construction of carbon trading market to achieve energy conservation and emission reduction, China’s carbon emissions still face many problems. Therefore, in this paper, based on 1551 daily frequency data from January 2019 to March 2023, we compare and analyze the prediction effect of different models for carbon emission data using SARIMA, LSTM and SVR models considering the trend of time series, and the results show that SARIMA model has better prediction effect than the remaining two models for carbon emission data.

References

[1]  冯相昭, 邹骥. 中国CO2排放趋势的经济分析[J]. 中国人口?资源与环境, 2008, 18(3): 43-47.
[2]  袁路, 潘家华. Kaya恒等式的碳排放驱动因素分解及其政策含义的局限性[J]. 气候变化研究进展, 2013, 9(3): 210-215.
[3]  Jiang, P., Gong, X.J., Yang, Y.R., et al. (2023) Research on Spatial and Temporal Differences of Carbon Emissions and Influencing Factors in Eight Economic Regions of China Based on LMDI Model. Scientific Reports, 13, Article No. 7965.
https://doi.org/10.1038/s41598-023-35181-w
[4]  张矢宇, 杨杰, 田志武. 基于LMDI的交通运输碳排放因素分解及预测研究[J]. 武汉理工大学学报(信息与管理工程版), 2023, 45(2): 252-257.
[5]  胡广阔, 李春梅, 惠树鹏. 基于改进STRIPAT模型在碳排放强度预测中的应用[J]. 统计与决策, 2016(3): 87-89.
[6]  刘茂辉, 翟华欣, 刘胜楠, 岳亚云, 杨多堃, 李婧. 基于LMDI方法和STIRPAT模型的天津市碳排放量对比分析[J]. 环境工程技术学报, 2023, 13(1): 63-70.
[7]  杨青, 彭若慧, 刘星星, 曹兰娟. 基于地理加权回归的省域碳排放影响因素研究[J]. 环境工程技术学报, 2023, 13(1): 54-62.
[8]  肇晓楠, 谢新连, 赵瑞嘉. 基于滑动窗口动态输入LSTM网络的铁路运输系统碳排放量预测方法[J]. 交通信息与安全, 2023, 41(1): 169-178.
[9]  池小波, 续泽晋, 贾新春, 张伟杰. 基于WPD-ISSA-CA-CNN模型的电厂碳排放预测[J]. 控制工程, 2023: 1-8.
[10]  Vahid, A. and Mark, G. (2023) Day Ahead Carbon Emission Forecasting of the Regional Na-tional Electricity Market Using Machine Learning Methods. Engineering Applications of Artificial Intelligence, 123, Article ID: 106314.
https://doi.org/10.1016/j.engappai.2023.106314
[11]  Zhao, J.J., Kou, L., Wang, H.T., He, X.Y., et al. (2022) Carbon Emission Prediction Model and Analysis in the Yellow River Basin Based on a Machine Learning Method. Sustainability, 14, Article No. 6153.
https://doi.org/10.3390/su14106153
[12]  Yuan, J.B., Liu, Y.S., Xu, J., Gao, S.H. and Li, X.T. (2019) Carbon Emission Prediction of Civil Buildings in China Based on Improved Grey Prediction Method. Proceedings of 2019 2nd International Conference on Manufacturing Technology, Materials and Chemical Engineering (MTMCE 2019), Wuhan, 14-16 June 2019, 1065-1073.
[13]  Box, G.E.P., Jenkins, G.M., Reinsel, G.C. 时间序列分析: 预测与控制[M]. 北京: 中国统计出版社, 1997: 211-376.
[14]  Tian, C., Wang, H. and Luo, X. (2019) Time-Series Modelling and Forecasting of Hand, Foot and Mouth Disease Cases in China from 2008 to 2018. Epidemiology & Infection, 147, e82.
https://doi.org/10.1017/S095026881800362X
[15]  王燕. 应用时间序列分析[M]. 北京: 中国人民大学出版社, 2016.
[16]  Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural Computa-tion, 9, 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735
[17]  杜树新, 吴铁军. 用于回归估计的支持向量机方法[J]. 系统仿真学报, 2003(11): 1580-1585, 1633.
[18]  Ustünu, B., Melssen, W.J. and Buydens, L.M.C. (2007) Visualisa-tion and Interpretation of Support Vector Regression Models. Analytica Chimica Acta, 595, 299-309.
https://doi.org/10.1016/j.aca.2007.03.023

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133