|
红外与可见光图像融合研究
|
Abstract:
红外与可见光图像融合是指将同一场景下的相机获取的图像与红外传感器获得的图像融合为一张图像。融合图像具备源图像的重要信息,尽量无冗余信息。融合图像在广泛应用在计算机视觉、农业、遥感、医学等领域。本文主要对其研究进展做整理,使感兴趣学者快速掌握红外与可见光图像融合研究脉络。首先将研究算法主要分为:多尺度变换、稀疏表示、神经网络以及其他方法等几大类。接着对每类进行详细探讨,然后对目前主流算法做一些优劣评价与总结。最后对本研究领域未来值得突破点进行展望。
Visible and infrared image fusion refers to the fusion of images obtained by cameras and infrared sensors in the same scene into one image. The fused image has important information from the source image, and there should be as little redundant information as possible. Fusion images are widely used in many fields such as medical, computer vision, agriculture, and remote sensing. This article mainly summarizes the research progress of visible and infrared image fusion, enabling interested scholars to quickly grasp the research context. Firstly, the algorithms are mainly divided into several categories: multi-scale transformation, sparse representation, neural networks, and other methods. Secondly, a detailed discussion will be conducted on each category, followed by some evaluation and summary of the current mainstream algorithms. Finally, prospects for future breakthroughs in this research field.
[1] | Ma, W., Wang, K., Li, J., Yang, S.X., Li, J., Song, L. and Li, Q. (2023) Infrared and Visible Image Fusion Technology and Application: A Review. Sensors, 23, Article No. 599. https://doi.org/10.3390/s23020599 |
[2] | 沈英, 黄春红, 黄峰, 等. 红外与可见光图像融合技术的研究进展[J]. 红外与激光工程, 2021, 50(9): 152-169. |
[3] | Bulanon, D.M., Burks, T.F. and Alchanatis, V. (2009) Image Fusion of Visible and Thermal Images for Fruit Detection. Biosys-tems Engineering, 103, 12-22. https://doi.org/10.1016/j.biosystemseng.2009.02.009 |
[4] | Li, S., Zou, Y., Wang, G. and Lin, C. (2023) Infrared and Visible Image Fusion Method Based on a Principal Component Analysis Network and Image Pyramid. Remote Sensing, 15, Article No. 685. https://doi.org/10.3390/rs15030685 |
[5] | Liu, Z., Yin, H., Fang, B., et al. (2015) A Novel Fusion Scheme for Visible and Infrared Images Based on Compressive Sensing. Optics Communications, 335, 168-177. https://doi.org/10.1016/j.optcom.2014.07.093 |
[6] | Chen, Y.L., et al. (2023) In-frared and Visible Image Fusion with Deep Wavelet-Dense Network. Optica Applicata, 53, 49-64. https://doi.org/10.37190/oa230104 |
[7] | Shen, Y., Xiang, K.Y., et al. (2021) A Noisy Infrared and Visible Light Image Fusion Algorithm. Journal of Information Processing Systems, 17, 1004-1019. |
[8] | Zhang, Q., Liu, Y., Blum, R.S., et al. (2018) Sparse Representation Based Multi-Sensor Image Fusion for Multi-Focus and Multi-Modality Images: A Review. Information Fusion, 40, 57-75. https://doi.org/10.1016/j.inffus.2017.05.006 |
[9] | Yang, B. and Li, S. (2012) Pixel-Level Image Fusion with Simultaneous Orthogonal Matching Pursuit. Information Fusion, 13, 10-19. https://doi.org/10.1016/j.inffus.2010.04.001 |
[10] | Kim, M., Han, D.K. and Ko, H. (2016) Joint Patch Cluster-ing-Based Dictionary Learning for Multimodal Image Fusion. Information Fusion, 27, 198-214. https://doi.org/10.1016/j.inffus.2015.03.003 |
[11] | Wang, K., Qi, G., Zhu, Z., et al. (2017) A Novel Geometric Dic-tionary Construction Approach for Sparse Representation Based Image Fusion. Entropy, 19, 306. https://doi.org/10.3390/e19070306 |
[12] | Wang, C., Wu, Y., Yu, Y., et al. (2022) Joint Patch Clustering-Based Adaptive Dictionary and Sparse Representation for Multi-Modality Image Fusion. Machine Vision and Applications, 33, Article No. 69.
https://doi.org/10.1007/s00138-022-01322-w |
[13] | Zhang, H., Xu, H., Tian, X., et al. (2021) Image Fusion Meets Deep Learning: A Survey and Perspective. Information Fusion, 76, 323-336. https://doi.org/10.1016/j.inffus.2021.06.008 |
[14] | Xu, H., Wang, X. and Ma, J. (2021) DRF: Disentangled Repre-sentation for Visible and Infrared Image Fusion. IEEE Transactions on Instrumentation and Measurement, 70, Article ID: 5006713.
https://doi.org/10.1109/TIM.2021.3056645 |
[15] | Li, H. and Wu, X.J. (2019) DenseFuse: A Fusion Approach to Infrared and Visible Images. IEEE Transactions on Image Processing, 28, 2614-2623. https://doi.org/10.1109/TIP.2018.2887342 |
[16] | Ren, L., Pan, Z.B., Cao, J.Z., et al. (2021) Infrared and Visible Image Fusion Based on Variational Auto-Encoder and Infrared Feature Compensation. Infrared Physics & Technology, 117, Article ID: 103839.
https://doi.org/10.1016/j.infrared.2021.103839 |
[17] | Ma, J.Y., Liang, P.W., Yu W, et al. (2020) Infrared and Visi-ble Image Fusion via Detail Preserving Adversarial Learning. Information Fusion, 54, 85-98. https://doi.org/10.1016/j.inffus.2019.07.005 |
[18] | Li, Q., et al. (2021) Coupled GAN with Relativistic Discrimina-tors for Infrared and Visible Images Fusion. IEEE Sensors Journal, 21, 7458-7467. https://doi.org/10.1109/JSEN.2019.2921803 |
[19] | Xu, H., Ma, J., Jiang, J., Guo, X. and Ling, H. (2022) U2Fusion: A Unified Unsupervised Image Fusion Network. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 502-518.
https://doi.org/10.1109/TPAMI.2020.3012548 |
[20] | Liu, Y., Liu, S.P. and Wang, Z.F. (2015) A General Frame-work for Image Fusion Based on Multi-Scale Transform and Sparse Representation. Information Fusion, 24, 147-164. https://doi.org/10.1016/j.inffus.2014.09.004 |
[21] | Li, L., Lv, M., Jia, Z., Jin, Q., Liu, M., Chen, L. and Ma, H. (2023) An Effective Infrared and Visible Image Fusion Approach via Rolling Guidance Filtering and Gradient Saliency Map. Remote Sensing, 15, Article No. 2486.
https://doi.org/10.3390/rs15102486 |
[22] | Mo, Y., Kang, X.D., et al. (2021) Attribute Filter Based Infrared and Visible Image Fusion. Information Fusion, 75, 41-54. https://doi.org/10.1016/j.inffus.2021.04.005 |
[23] | 魏琦, 赵娟. 红外和可见光图像融合算法的研究进展[J]. 计算机科学, 2023, 50(2): 190-200. |
[24] | 龙志亮, 邓月明, 王润民, 等. 基于显著性检测与MDLatLRR分解的红外与可见光图像融合[J]. 红外技术, 2023, 45(7): 705-713. |