|
基于在线评论的课程思政学生关注点研究
|
Abstract:
受众的关注点是教学设计与教学效果评估中的关键问题。教育研究领域关于思政教学中学生关注点的研究较少,且基于问卷的研究方式受到成本、数据量与样本偏差的限制,效果有限。文章提出一种基于深度预训练模型的课程思政评论话题识别方法。基于自主爬取的相关评论文本,首先通过Bert算法进行特征表示和降维;然后针对经典的分层隐树分析方法处理词共现问题的区分度不足及高时间开销等问题,提出了基于阈值的词共现预修剪的分层隐树模型;最后基于提出的方法,实现了数据获取、预处理、话题挖掘及结果展示的全流程平台。实验结果表明,提出算法具有更好的话题检测性能。研究发现,学生对于带有思政内容的课程的关注点主要仍在于课程教学本身,而不满主要对于思政点融入比较机械等情况。
The focus of the audience is a key issue in teaching design and evaluation of teaching effectiveness. There is a lack of research in the field of educational research on the concerns of students in ideological and political education, and the questionnaire based research method is limited by cost, data volume, and sample bias, resulting in limited effectiveness. The article proposes a topic recognition method for course ideological and political comments based on a deep pre training model. Based on self crawling of relevant comment texts, first feature representation and dimensionality reduction are performed using the Bert algorithm; then, in view of the lack of differentiation and high time cost of the classical hierarchical hidden tree analysis method to deal with the problem of word cooccurrence, a hierarchical hidden tree model based on threshold pre pruning of word cooccurrence is proposed; finally, based on the proposed method, a full process platform for data acquisition, preprocessing, topic mining, and result display was implemented. The experimental results show that the proposed algorithm has better topic detection performance. Research has found that students’ focus on courses with ideological and political content mainly lies in the teaching itself, while their dissatisfaction mainly lies in the rigid integration of ideological and political points.
[1] | 何茂刚, 刘向阳, 张颖. 课程思政及热力学的思政元素[J]. 高等工程教育研究, 2023, 51(1): 213-216. |
[2] | 李健, 杨晓晨, 门桐宇. “课前 + 课中 + 课后”全过程高中数学课程思政[J]. 中国教育学刊, 2023(52): 76-78. |
[3] | 葛晨光, 朱清慧, 张水潮. 高校课程思政与思政课程协同育人的基本要求及实现路径[J]. 学校党建与思想教育, 2023(10): 25-28. |
[4] | 翟乐, 杜茹. 高校思政教育网络课程开发创新研究[J]. 中国高等教育, 2023(6): 27-30. |
[5] | 崔正贤, 马万利. 新时代课程思政建设的功能效用、问题症结与着力方向研究[J]. 中国电化教育, 2022(11): 82-89. |
[6] | 张欣茹, 姜泽毅, 蒋滨繁, 等. 面向新工科建设“五维并举”的“能量转换与利用”课程教学设计、创新与实践[J]. 高等工程教育研究, 2023(S1): 57-61. |
[7] | 吴姗姗, 吴晋峰, 王云弟, 等. 中国国家旅游形象研究——以北京和西安外国游客为例[J]. 浙江大学学报(理学版), 2015, 42(4): 466-473. |
[8] | 樊姗姗. 系统科学视野下“虚拟仿真 + 思政课”亲和力提升路径探析[J]. 系统科学学报, 2024, 32(2): 97-102. |
[9] | Jia, S.S. (2020) Motivation and Satisfaction of Chinese and U.S. Tourists in Restaurants: A Cross-Cultural Text miNing of Online Reviews. Tour-ism Management, 78, Article ID: 104071. https://doi.org/10.1016/j.tourman.2019.104071 |
[10] | Malbon, J. (2013) Taking Fake Online Consumer Reviews Seriously. Journal of Consumer Policy, 36, 139-157.
https://doi.org/10.1007/s10603-012-9216-7 |
[11] | Lui, T.W., Bartosiak, M., Piccoli, G. and Sadhya, V. (2018) Online Review Response Strategy and Its Effects on Competitive Performance. Tourism Management, 67, 180-190. https://doi.org/10.1016/j.tourman.2018.01.014 |
[12] | Cheng, M.M. and Jin, X. (2019) What Do Airbnb Users Care About? An Analysis of Online Review Comments. International Journal of Hospitality Management, 76, 58-70. https://doi.org/10.1016/j.ijhm.2018.04.004 |
[13] | 史达, 王志敏. 绿色饭店用户体验——基于在线评论的深度学习研究[J]. 旅游科学, 2019, 33(6): 62-76. |
[14] | 周楠, 杜攀, 靳小龙, 等. 面向舆情事件的子话题标签生成模型ET-TAG[J]. 计算机学报, 2018, 41(7): 1490-1503. |
[15] | Choi, H.J. and Park, C.H. (2019) Emerging Topic Detection in Twitter Stream Based on High Utility Pattern Mining. Expert Systems with Applications, 115, 27-36. https://doi.org/10.1016/j.eswa.2018.07.051 |
[16] | Wang, G.H., Chi, Y.X. and Liu, Y.J. (2019) Studies on a Multi-dimensional Public Opinion Network Model and Its Topic Detection Algorithm. Information Processing & Management, 56, 584-608.
https://doi.org/10.1016/j.ipm.2018.11.010 |
[17] | Pang, J.B., Tao, F., Huang, Q.M., Tian, Q. and Yin, B.C. (2019) Two Birds with One Stone: A Coupled Poisson Deconvolution for Detecting and Describing Topics from Multimodal Web Data. IEEE Transactionson Neural Networksand Learning Systems, 30, 2397-2409. https://doi.org/10.1109/TNNLS.2018.2872997 |
[18] | 李慧, 王丽婷. 基于词项热度的微博热点话题发现研究[J]. 情报科学, 2018, 36(4): 45-50. |
[19] | 张仰森, 段宇翔, 黄改娟, 等. 社交媒体话题检测与追踪技术研究综述[J]. 中文信息学报, 2019, 33(7): 1-10, 30. |
[20] | Kim, S., Park, H. and Lee, J. (2020) Word2vec-Based Latent Semantic Analy-sis (W2V-LSA) for Topic Modeling: A Study on Blockchain Technology Trend Analysis. Expert System with Applica-tions, 152, Article 113401.
https://doi.org/10.1016/j.eswa.2020.113401 |
[21] | Chen, J.Y., Gong, Z.G. and Liu, W.W. (2019) A Nonparametric Model for Online Topic Discovery with Word Embeddings. Information Science, 504, 32-47. https://doi.org/10.1016/j.ins.2019.07.048 |
[22] | Jelodar, H., Wang, Y.L., Yuan, C., et al. (2019) Latent Dirichlet Al-location (LDA) and Topic Modeling: Models, Applications, a Survey. Multimedia Tools and Applications, 78, 15169-15211. https://doi.org/10.1007/s11042-018-6894-4 |
[23] | Conneau, A. and Lample, G. (2019) Cross-Lingual Language Model Pretraining. 33rd Conference on Neural Information Processing Systems, Vancouver, 8-14 December 2019, 7059-7069. |
[24] | Liu, T.F., Zhang, N.L., Chen, P.X., et al. (2017) Latent Tree Models for Hierarchical Topic De-tection. Artifical Intelligence, 250, 105-124. https://doi.org/10.1016/j.artint.2017.06.004 |
[25] | Liu, T.F., Zhang, N., Chen, P.X., et al. (2015) Greedy Learning of Latent Tree Models for Multidimensional Clustering. Machine Learning, 98, 301-330. https://doi.org/10.1007/s10994-013-5393-0 |