|
高环同态的模糊稳定性
|
Abstract:
本论文我们主要采取不动点的方法,通过选取一个特殊的控制函数序列以及利用模糊赋范空间的一些性质来研究模糊Banach代数上一个近似高环同态是一个精确高环同态,从而证得高环同态的模糊稳定性。此外,根据模糊连续性的定义,我们还得到了关于高环同态的模糊连续性。
In this paper, we mainly use the fixed point method to study that an approximate higher ring homomorphism in fuzzy Banach algebra is an exact higher ring homomorphism by selecting a special control function sequence and using some properties of fuzzy normed space, thus proving the fuzzy stability of higher ring homomorphisms. In addition, according to the definition of fuzzy continuity, we also get the fuzzy continuity about higher ring homomorphisms.
[1] | Ulam, S.M. (1960) Collection of Mathematical Problems. |
[2] | Hyers, D.H. (1941) On the Stability of the Linear Functional Equation. Proceedings of the National Academy of Sciences of the United States of America, 27, 222-224. https://doi.org/10.1073/pnas.27.4.222 |
[3] | Aoki, T. (1950) On the Stability of the Linear Transformation in Banach Spaces. Journal of the Mathematical Society of Japan, 2, 64-66. https://doi.org/10.2969/jmsj/00210064 |
[4] | Rassias, Th.M. and Themistocles, M. (1978) On the Stability of the Linear Mapping in Banach Spaces. Proceedings of the American Mathematical Society, 72, 297-297. https://doi.org/10.1090/S0002-9939-1978-0507327-1 |
[5] | G?vruta, P. (1994) A Generalization of the Hy-ers-Ulam-Rassias Stability of Approximately Additive Mappings. Journal of Mathematical Analysis and Application, 184, 431-436. https://doi.org/10.1006/jmaa.1994.1211 |
[6] | 纪培胜, 赵英姿. Jensen-二次函数方程及其Hyers-Ulam稳定性[J]. 数学学报(中文版), 2015, 58(2): 251-260. |
[7] | Gao, Z.X., Cao, U.X., Zheng, E.T. and Lu, X.U. (2009) Generalized Hyers-Ulam-Rassias Stability of Functional Inequalities and Functional Equations. Journal of Mathematical Inequalities, 3, 63-77. https://doi.org/10.7153/jmi-03-06 |
[8] | 赵英姿, 纪培胜. 模糊Banach代数上高阶环导子的稳定性[J]. 青岛大学学报(自然科学版), 2012, 25(3): 13-16. |
[9] | Isac, G. and Rassias, Th.M. (1996) Stability of ψ-Additive Mappings: Applications to Nonlinear Analysis. International Journal of Mathematics and Mathematical Science, 19, 21-228. https://doi.org/10.1155/S0161171296000324 |
[10] | Cho, Y.J., Park, C. and Rassias, Th.M. (2015) Stability of Functional Equations in Banach Algebras. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-18708-2 |
[11] | Katsaras, A.K. (1984) Fuzzy Topological Vector Spaces II. Fuzzy Sets and Systems, 12, 143-154.
https://doi.org/10.1016/0165-0114(84)90034-4 |
[12] | Bag, T. and Samanta, S.K. (2005) Fuzzy Bounded Linear Operators. Fuzzy Sets and Systems, 151, 513-547.
https://doi.org/10.1016/j.fss.2004.05.004 |
[13] | Jun, K.W. and Park, D.W. (1996) Almost Derivations on the Banachalgebra Cn[0,1]. Bulletin of the Korean Mathematical Society, 33, 359-366. |
[14] | Badora, R. (2002) On Approximate Ring Homomorphisms. Journal of Mathematical Analysis and Applications, 276, 589-597. https://doi.org/10.1016/S0022-247X(02)00293-7 |
[15] | Gordji, M.E. (2009) On Approximate n-Ring Homo-morphisms and n-Ring Derivations. |
[16] | Mirmostafaee, A.K. (2009) A Fixed Point Approach to Almost Quartic Mappings in Quasi Fuzzy Normed Spaces. Fuzzy Sets and Systems, 160, 1653-1662. https://doi.org/10.1016/j.fss.2009.01.011 |
[17] | Ekrami, S.K. (2022) Higher Homomorphisms and ?Their Ap-proximations. Journal of Mahani Mathematical Research, 12, 327-337. |
[18] | Mihet, D. and Radu, V. (2008) On the Stability of the Additive Cauchy Functional Equation in Random Normed Spaces. Mathematical Analysis and Ap-plication, 343, 567-572. https://doi.org/10.1016/j.jmaa.2008.01.100 |