全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

痹宁汤基于网络药理学–转录组学分析通过PPAR信号通路抑制痛风肾的作用机制
Bining Decoction Based on Network Pharmacology-Transcriptome Analysis of the Mechanism of Inhibition of Gout Kidney through PPAR Signal Pathway

DOI: 10.12677/ACM.2023.1381809, PP. 12908-12923

Keywords: 痹宁汤,网络药理学,转录组学,痛风肾
Bining Decoction
, Network Pharmacology, Transcriptomics, Gouty Nephropathy

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:痛风肾是一种因血尿酸产生过多或排泄减少而导致大量血尿酸沉积于肾小管而引起的常见肾小球疾病。痹宁汤是治疗痛风肾的有效方剂。然而,其作用机制尚不明确。本研究运用网络药理学、分子对接技术以及转录组学分析,探讨痹宁汤治疗痛风肾的潜在分子机制、方法。方法:首先,使用网络药理学方法找到痹宁汤对痛风肾的潜在靶点:从公共数据库TCMSP获取痹宁汤相关9味中药有效化合物靶点,从OMIM、GenBank、GeneCards、Disgenet数据库中获取痛风肾相关基因靶点,进一步筛选和聚类。然后,将网络药理学预测的痹宁汤靶点与筛选的痛风肾相关基因重叠,利用Venny2.1.0获取相交靶标,找到交集靶点,然后利用Cytoscape软件构建活性成分——靶标网络。通过String数据库和Cytoscape软件绘制蛋白–蛋白相互作用(PPI)网络。然后,通过DAVID数据库进行《京都基因与基因组百科全书》(KEGG)的基因本体(GO)和途径富集分析。最后,使用Discovery Studio 2019 Client进行分子对接。另外,以动物实验的方法进行痛风肾建模,以痹宁汤对痛风肾小鼠进行治疗,并采集样本进行分析。将其结果以转录组学方法进行测序实验分析,并作出表达量差异分析。结果:根据筛选标准,共筛选出痹宁汤的413个活性化合物和1085个潜在靶点。发现了118个基因。在活性成分–靶点网络中,β-谷甾醇beta-sitosterol、谷甾醇sitosterol、甘露醇Mandenol、豆甾醇Stigmasterol是重要的活性成分。在PPI网络中,MAPK8、JAK2、PTPN11、ESR1、HSP90AA1、MAPK14是核心靶点。将其进行分子对接,发现MAPK8与化合物豆甾醇Stigmasterol有比较好的结合亲和力,且豆甾醇Stigmasterol化和物广泛存在于痹宁汤中黄柏、山慈菇、薏苡仁中药成分中。因此在分子对接方面,痹宁汤活性成分与核心靶点具有良好的亲和力。将转录组学数据与118个靶基因相交,推测PPAR信号通路可能是痹宁汤的有效机制。体内实验中痹宁汤治疗后的痛风肾小鼠肾功、尿蛋白有显著改善。这些结果证实痹宁汤主要通过PPAR信号通路在痛风肾疾病中发挥有效作用。结论:本研究初步预测了痹宁汤治疗痛风肾的主要有效成分、潜在靶点、信号通路,为进一步研究痹宁汤对痛风肾的保护机制及临床应用提供新的思路。
Objective: Gouty nephropathy is a common glomerular disease caused by excessive uric acid pro-duction or decreased uric acid excretion, which leads to a large amount of uric acid deposition in renal tubules. Bining Decoction is an effective prescription for treating Gouty nephropathy. However, its mechanism of action is still unclear. In this study, network pharmacological molecular docking technology and transcriptomics analysis were used to explore the potential molecular mechanism of Bining Decoction in treating Gouty nephropathy. Method: Firstly, the potential targets of Bining Decoction on Gouty nephropathy were found by using network pharmacology methods: the effective compound targets of 9 traditional Chinese medicines related to Bining Decoction were obtained from public database TCMSP, and the Gouty nephropathy-related gene targets were obtained from OMIM, GenBank, GeneCards, Disgenet database for further screening and clustering. Then the net-work pharmacological prediction of Bining Decoction target and the Gouty nephropathy-related genes was overlapped using Venny2.1.0 to obtain the intersection target and then use Cytoscape software to construct the active ingredient-target network. Protein-protein interaction (PPI) net-work is plotted by String database and Cytoscape software. Then the gene ontology (GO) and path-way enrichment of Kyoto Encyclopedia of Genomics and Genomics (KEGG) were analyzed by DAVID database. Finally, Discovery Studio 2019 Client is used for molecular docking. In addition, the model of Gouty nephropathy was established by

References

[1]  李娜, 王坤, 李琦. 加味忍冬藤汤对尿酸性肾病湿热内蕴证患者血尿酸、血β2微球蛋白的影响[J]. 四川中医, 2020, 38(9): 125-128.
[2]  朱爽, 齐继鹏, 张志娇, 等. 基于玄府理论探讨原发性痛风及痛风性肾病的治疗策略[J]. 风湿病与关节炎, 2022, 11(4): 55-58.
[3]  杨婷, 林志健, 王雨, 等. 痛风相关模型研究进展及痛风病建模思考[J]. 世界中医药, 2021, 16(1): 46-51.
[4]  方茹璐, 徐巧璐, 葛晓, 等. 462例痛风患者合并症或并发症及其相关因素研究[J]. 新中医, 2022, 54(12): 258-262.
[5]  Mei, Y., Dong, B., Geng, Z. and Xu, L. (2022) Excess Uric Acid Induces Gouty Nephropathy through Crystal Formation: A Review of Recent Insights. Frontiers in Endocrinology (Lausanne), 13, Article 911968.
https://doi.org/10.3389/fendo.2022.911968
[6]  Fu, W.H., Li, Q.W., Yao, J.W., et al. (2014) Protein Expression of Urate Transporters in Renal Tissue of Patients with Uric Acid Nephrolithiasis. Cell Biochemistry and Biophysics, 70, 449-454.
https://doi.org/10.1007/s12013-014-9939-y
[7]  曾小峰, 陈耀龙. 2016中国痛风诊疗指南[J]. 浙江医学, 2017, 39(21): 1823-1832.
[8]  张亮, 裴冬梅. 2013~2020年沈阳市体检人群高尿酸血症检出率及危险因素分析[J]. 公共卫生与预防医学, 2022, 33(3): 90-93.
[9]  祝开思, 张彩香. 慢性尿酸性肾病发病机制研究现状[J]. 中国糖尿病杂志, 2017, 25(10): 950-952.
[10]  佟颖, 胡荣雪, 檀佳惠, 等. 痹宁汤联合针刀治疗湿热蕴结型痛风肾关节炎的效果[J]. 中国医药导报, 2021, 18(9): 172-175.
[11]  Han, L., Tao, H., Kang, L., Wang, S., Diao, Q., Han, D. and Cui, K. (2022) Transcriptome and iTRAQ-Based Proteome Reveal the Molecular Mechanism of Intestinal Injury Induced by Weaning Ewe’s Milk in Lambs. Frontiers in Veterinary Science, 9, Article 809188.
https://doi.org/10.3389/fvets.2022.809188
[12]  Clark, J.Z., Chen, L., Chou, C.L., Jung, H.J., Lee, J.W. and Knep-per, M.A. (2019) Representation and Relative Abundance of Cell-Type Selective Markers in Whole-Kidney RNA-Seq Data. Kidney International, 95, 787-796.
https://doi.org/10.1016/j.kint.2018.11.028
[13]  He, D., Li, Q., Du, G., Sun, J., Meng, G. and Chen, S. (2021) Re-search on the Mechanism of Guizhi to Treat Nephrotic Syndrome Based on Network Pharmacology and Molecular Docking Technology. BioMed Research International, 2021, Article ID: 8141075.
https://doi.org/10.1155/2021/8141075
[14]  Yao, Z., Zhang, B., Niu, G., Yan, Z., Tong, X., Zou, Y. and Yang, M. (2022) Subunits of C1Q Are Associated with the Progression of Intermittent Claudication to Chronic Limb-Threatening Ischemia. Frontiers in Cardiovascular Medicine, 9, Article 864461.
https://doi.org/10.3389/fcvm.2022.864461
[15]  Li, W.H., Han, J.R., Ren, P.P., Xie, Y. and Jiang, D.Y. (2021) Ex-ploration of the Mechanism of Zisheng Shenqi Decoction against Gout Arthritis Using Network Pharmacology. Compu-tational Biology and Chemistry, 90, Article 107358.
https://doi.org/10.1016/j.compbiolchem.2020.107358
[16]  Jie, F., Yang, X., Yang, B., Liu, Y., Wu, L. and Lu, B. (2022) Stigmasterol Attenuates Inflammatory Response of Microglia via NF-κB and NLRP3 Signaling by AMPK Acti-vation. Biomedicine & Pharmacotherapy, 153, Article 113317.
https://doi.org/10.1016/j.biopha.2022.113317
[17]  Guo, C., Gao, Y.Y., Ju, Q.Q., Wang, M., Zhang, C.X., Gong, M. and Li, Z.L. (2021) MAPK14 Over-Expression Is a Transcriptomic Feature of Polycythemia Vera and Correlates with Adverse Clinical Outcomes. Journal of Translational Medicine, 19, Article No. 233.
https://doi.org/10.1186/s12967-021-02913-3
[18]  冯益宇. 非布司他对比别嘌醇治疗高尿酸血症的疗效和安全性评价[D]: [硕士学位论文]. 南昌: 南昌大学, 2015.
[19]  刘亚芮. 中药复方痹宁汤治疗痛风性肾病的临床研究[D]: [硕士学位论文]. 哈尔滨: 黑龙江中医药大学, 2017.
[20]  李娜, 贾晓静, 冯杏, 韩艳, 赵丽君, 崔建军. 骨髓间充质干细胞对大鼠痛风肾的修复作用[J]. 中华临床医师杂志(电子版), 2017, 11(11): 1894-1901.
[21]  陈永熙, 王伟铭, 周同, 陈楠. PPAR-γ作用及其相关信号转导途径[J]. 细胞生物学杂志, 2006, 28(3): 382-386.
[22]  Mohamed Kamel, G.A., Harahsheh, E. and Hussein, S. (2022) Diacerein Ameliorates Acetaminophen Hepatotoxicity in Rats via Inhibiting HMGB1/TLR4/NF-κB and Upregulating PPAR-γ Signal. Molecular Biology Re-ports, 49, 5863-5874.
https://doi.org/10.1007/s11033-022-07366-5
[23]  Antoine, A., De Sousa Do Outeiro, C., Charnay, C., Belville, C., Henrioux, F., Gallot, D., Blanchon, L., Minet-Quinard, R. and Sapin, V. (2022) Dysregulation of the Amniotic PPARγ Pathway by Phthalates: Modulation of the Anti-Inflammatory Activity of PPARγ in Human Fetal Membranes. Life (Ba-sel), 12, Article544.
https://doi.org/10.3390/life12040544
[24]  Xu, H., Wu, J., Wang, S., Xu, L., Liu, P., Shi, Y., Wu, S., Deng, L. and Chen, X. (2022) Network Pharmacology and in Vivo Experiments Reveal the Pharmacological Effects and Molecular Mechanisms of Simiao Powder in Prevention and Treatment for Gout. BMC Complementary Medicine and Therapies, 22, Article No. 152.
https://doi.org/10.1186/s12906-022-03622-0
[25]  幸鹭, 胡旭东, 陶艳艳, 彭渊, 刘成海. 通过网络药理学与转录组学探讨扶正化瘀方影响巨噬细胞的抗肝纤维化机制及效应成分[J]. 中国中药杂志, 2022, 47(11): 3029-3037.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133