全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

脊柱术后手术部位感染相关因素及预防研究进展
Research Progress of Related Factors and Prevention of Surgical Site Infection after Spinal Surgery

DOI: 10.12677/ACM.2023.1381803, PP. 12867-12875

Keywords: 脊柱手术,感染,危险因素,预防
Spinal Operation
, Infection, Risk Factors, Prevention

Full-Text   Cite this paper   Add to My Lib

Abstract:

现代脊柱手术技术的日益进步使得越来越多的脊柱病患得到了有效治疗,然而随着脊柱手术的广泛开展及相关操作复杂性的逐渐提升,包括手术部位感染(SSI)在内的诸多术后并发症已成为影响脊柱病患预后的重要因素。国内外现存文献中对SSI影响因素及预防的观点复杂多样,但部分观点仍存在争议且缺乏概括性。故本文拟从患者自身因素、手术操作及病原体特征等三个方面对脊柱术后SSI常见影响因素与预防措施做出系统阐述,旨在为临床诊疗提供可靠的依据和及时有效的预防措施,从而改善脊柱术后患者的生活质量。
With the development of modern spinal surgery techniques, more and more patients with spinal diseases have been effectively treated. However, with the increasing prevalence and complexity of spinal surgery, many postoperative complications, including surgical site infection (SSI), have be-come an important factor affecting the prognosis of patients with spinal diseases. Based on relevant literature, reports at home and abroad, this paper will systematically elaborate on the common in-fluencing factors of SSI after spinal surgery and its preventive measures from three aspects, includ-ing the patient’s factors, surgical operation factors, and pathogen characteristics, to provide the re-liable basis and timely and effective preventive measures for clinical diagnosis and treatment. It can improve the quality of life and relieve the pain of patients after spinal surgery.

References

[1]  肖莉, 陈荣春, 曾国华, 等. 脊柱术后切口感染危险因素的荟萃分析[J]. 中国感染与化疗杂志, 2019, 19(5): 473-477.
https://doi.org/10.16718/j.1009-7708.2019.05.002
[2]  Fei, Q., Li, J., Lin, J., et al. (2016) Risk Factors for Surgi-cal Site Infection after Spinal Surgery: A Meta-Analysis. World Neurosurgery, 95, 507-515.
https://doi.org/10.1016/j.wneu.2015.05.059
[3]  Zheng, L.M., Zhang, Z.W., Wang, W., Li, Y. and Wen, F. (2022) Relationship between Smoking and Postoperative Complications of Cervical Spine Surgery: A Systematic Review and Meta-Analysis. Scientific Reports, 12, Article No. 9172.
https://doi.org/10.1038/s41598-022-13198-x
[4]  Thomsen, T., Villebro, N. and M?ller, A.M. (2014) Interven-tions for Preoperative Smoking Cessation. The Cochrane Database of Systematic Reviews, No. 3, Article No. CD002294.
https://doi.org/10.1002/14651858.CD002294.pub4
[5]  Fan Chiang, Y.H., Lee, Y.W., Lam, F., et al. (2023) Smoking Increases the Risk of Postoperative Wound Complications: A Propensity Score-Matched Cohort Study. Inter-national Wound Journal, 20, 391-402.
https://doi.org/10.1111/iwj.13887
[6]  Marinucci, L., Balloni, S., Fettucciari, K., et al. (2018) Nicotine Induces Apoptosis in Human Osteoblasts via a Novel Mechanism Driven by H2O2 and Entailing Glyoxalase 1-Dependent MG-H1 Accumulation Leading to TG2-Mediated NF-kB Desensitization: Implication for Smokers-Related Osteoporosis. Free Radical Biology & Medicine, 117, 6-17.
https://doi.org/10.1016/j.freeradbiomed.2018.01.017
[7]  Zheng, Y.H., Yang, J.J., Tang, P.J., et al. (2021) A Novel Keap1 Inhibitor iKeap1 Activates Nrf2 Signaling and Ameliorates Hydrogen Peroxide-Induced Oxidative Injury and Apoptosis in Osteoblasts. Cell Death & Disease, 12, Article No. 679.
https://doi.org/10.1038/s41419-021-03962-8
[8]  Darvin, M.E., Lademann, J., Von Hagen, J., et al. (2022) Carot-enoids in Human Skin in Vivo: Antioxidant and Photo-Protectant Role against External and Internal Stressors. Antioxi-dants, 11, Article 1451.
https://doi.org/10.3390/antiox11081451
[9]  Hikata, T., Iwanami, A., Hosogane, N., et al. (2014) High Preopera-tive Hemoglobin A1c Is a Risk Factor for Surgical Site Infection after Posterior Thoracic and Lumbar Spinal Instrumen-tation Surgery. Journal of Orthopaedic Science, 19, 223-228.
https://doi.org/10.1007/s00776-013-0518-7
[10]  Kobayashi, K., Ando, K., Kato, F., et al. (2018) Reoperation within 2 Years after Lumbar Interbody Fusion: A Multicenter Study. European Spine Journal, 27, 1972-1980.
https://doi.org/10.1007/s00586-018-5508-1
[11]  Aitcheson, S.M., Frentiu, F.D., Hurn, S.E., Edwards, K. and Murray, R.Z. (2021) Skin Wound Healing: Normal Macrophage Function and Macrophage Dysfunction in Diabetic Wounds. Molecules, 26, Article 4917.
https://doi.org/10.3390/molecules26164917
[12]  Mukai, K., Horike, S.I., Meguro-Horike, M., et al. (2022) Topical Estrogen Application Promotes Cutaneous Wound Healing in db/db Female Mice with Type 2 Diabetes. PLOS ONE, 17, e0264572.
https://doi.org/10.1371/journal.pone.0264572
[13]  Liu, J., Li, G., Chen, Z.L. and Jiang, H.F. (2023) A Me-ta-Analysis of the Effect of Different Body Mass Index on Surgical Wound Infection after Colorectal Surgery. Interna-tional Wound Journal, 20, 2151-2158.
https://doi.org/10.1111/iwj.14091
[14]  Bono, O.J., Poorman, G.W., Foster, N., et al. (2018) Body Mass Index Predicts Risk of Complications in Lumbar Spine Surgery Based on Surgical Invasiveness. The Spine Journal, 18, 1204-1210.
https://doi.org/10.1016/j.spinee.2017.11.015
[15]  Abdallah, D.Y., Jadaan, M.M. and Mccabe, J.P. (2013) Body Mass Index and Risk of Surgical Site Infection following Spine Surgery: A Meta-Analysis. European Spine Journal, 22, 2800-2809.
https://doi.org/10.1007/s00586-013-2890-6
[16]  Porche, K., Lockney, D.T., Gooldy, T., Kubilis, P. and Murad, G. (2021) Nuchal Thickness and Increased Risk of Surgical Site Infection in Posterior Cervical Operations. Clinical Neurology and Neurosurgery, 205, Article ID: 106653.
https://doi.org/10.1016/j.clineuro.2021.106653
[17]  Shaw, K., Chen, J., Sheppard, W., et al. (2018) Use of the Subcutaneous Lumbar Spine (SLS) Index as a Predictor for Surgical Complications in Lumbar Spine Surgery. The Spine Journal, 18, 2181-2186.
https://doi.org/10.1016/j.spinee.2018.04.018
[18]  Sang, C., Chen, X., Ren, H., et al. (2020) Correlation between Lumbar Multifidus Fat Infiltration and Lumbar Postoperative Infection: A Retrospective Case-Control Study. BMC Sur-gery, 20, Article No. 35.
https://doi.org/10.1186/s12893-019-0655-9
[19]  Lian, J., Wang, Y., Yan, X., et al. (2023) Development and Vali-dation of a Nomogram to Predict the Risk of Surgical Site Infection within 1 Month after Transforaminal Lumbar Inter-body Fusion. Journal of Orthopaedic Surgery and Research, 18, Article No. 105.
https://doi.org/10.1186/s13018-023-03550-w
[20]  Elsamadicy, A.A., Havlik, J., Reeves, B.C., et al. (2021) Effects of Preoperative Nutritional Status on Complications and Readmissions after Posterior Lumbar Decompression and Fu-sion for Spondylolisthesis: A Propensity-Score Analysis. Clinical Neurology and Neurosurgery, 211, Article ID: 107017.
https://doi.org/10.1016/j.clineuro.2021.107017
[21]  Hart, A., Sun, Y., Titcomb, T.J., et al. (2022) Associ-ation between Preoperative Serum Albumin Levels with Risk of Death and Postoperative Complications after Bariatric Surgery: A Retrospective Cohort Study. Surgery for Obesity and Related Diseases, 18, 928-934.
https://doi.org/10.1016/j.soard.2022.04.006
[22]  Donnally, C.J., Rush, A.J., Rivera, S., et al. (2018) An Epidural Steroid Injection in the 6 Months Preceding a Lumbar Decompression without Fusion Predisposes Patients to Post-Operative Infections. Journal of Spine Surgery, 4, 529-533.
https://doi.org/10.21037/jss.2018.09.05
[23]  Petignat, C., Francioli, P., Harbarth, S., et al. (2008) Cefuroxime Prophylaxis Is Effective in Noninstrumented Spine Surgery: A Double-Blind, Placebo-Controlled Study. Spine, 33, 1919-1924.
https://doi.org/10.1097/BRS.0b013e31817d97cf
[24]  Menz, B.D., Charani, E., Gordon, D.L., et al. (2021) Surgical Antibiotic Prophylaxis in an Era of Antibiotic Resistance: Common Resistant Bacteria and Wider Considerations for Practice. Infection and Drug Resistance, 14, 5235-5252.
https://doi.org/10.2147/IDR.S319780
[25]  Hu, W., Wang, H., Wu, X., et al. (2023) Does the Microflora of Sur-gery Site Infection Change after Prophylactic Use of Vancomycin Powder in the Spine Surgery. Infection and Drug Re-sistance, 16, 105-113.
https://doi.org/10.2147/IDR.S390837
[26]  Ghobrial, G.M., Wang, M.Y., Green, B.A. and Levene, H.B. (2018) Preoperative Skin Antisepsis with Chlorhexidine Gluconate versus Povidone-Iodine: A Prospective Analysis of 6959 Consecutive Spinal Surgery Patients. Journal of Neurosurgery Spine, 28, 209-214.
https://doi.org/10.3171/2017.5.SPINE17158
[27]  Mastrocola, M., Matziolis, G., B?hle, S., et al. (2021) Me-ta-Analysis of the Efficacy of Preoperative Skin Preparation with Alcoholic Chlorhexidine Compared to Povidone Iodine in Orthopedic Surgery. Scientific Reports, 11, Article No. 18634.
https://doi.org/10.1038/s41598-021-97838-8
[28]  Panzures, A. (2023) 222-nm UVC Light as a Skin-Safe Solution to Antimicrobial Resistance in Acute Hospital Settings with a Particular Focus on Methicillin-Resistant Staphylococcus aureus and Surgical Site Infections: A Review. Journal of Applied Microbiology, 134, lxad046.
https://doi.org/10.1093/jambio/lxad046
[29]  Carballo Cuello, C.M., Fernández-De Thomas, R.J., De Jesus, O., De Jesús Espinosa, A. and Pastrana, E.A. (2021) Prevention of Surgical Site Infection in Lumbar Instrumented Fusion Us-ing a Sterile Povidone-Iodine Solution. World Neurosurgery, 151, e700-e706.
https://doi.org/10.1016/j.wneu.2021.04.094
[30]  Lemans, J.V.C., ?ner, F.C., Wijdicks, S.P.J., et al. (2019) The Efficacy of Intrawound Vancomycin Powder and Povidone-Iodine Irrigation to Prevent Surgical Site Infections in Com-plex Instrumented Spine Surgery. The Spine Journal, 19, 1648-1656.
https://doi.org/10.1016/j.spinee.2019.05.592
[31]  Newton Ede, M.P., Philp, A.M., Philp, A., et al. (2016) Pov-idone-Iodine Has a Profound Effect on in Vitro Osteoblast Proliferation and Metabolic Function and Inhibits Their Abil-ity to Mineralize and Form Bone. Spine, 41, 729-734.
https://doi.org/10.1097/BRS.0000000000001332
[32]  Remy, K.E., Hall, M.W., Cholette, J., et al. (2018) Mecha-nisms of Red Blood Cell Transfusion-Related Immunomodulation. Transfusion, 58, 804-815.
https://doi.org/10.1111/trf.14488
[33]  Yoshida, T., Prudent, M. and D’alessandro, A. (2019) Red Blood Cell Stor-age Lesion: Causes and Potential cliNical Consequences. Blood Transfusion, 17, 27-52.
[34]  Tanner, J. and Parkinson, H. (2002) Double Gloving to Reduce Surgical Cross-Infection. Cochrane Database of Systematic Reviews, No. 3, CD003087.
https://doi.org/10.1002/14651858.CD003087
[35]  Carroll, A.M., Kim, K.G., Walters, E.T., et al. (2021) Glove and Instrument Changing to Prevent Bacterial Contamination in Infected Wound Debridement and Closure Procedures: A Prospective Observational Study. International Wound Journal, 18, 664-669.
https://doi.org/10.1111/iwj.13568
[36]  Pennington, Z., Lubelski, D., Molina, C., et al. (2019) Prolonged Post-Surgical Drain Retention Increases Risk for Deep Wound Infection after Spine Surgery. World Neurosurgery, 130, e846-e853.
https://doi.org/10.1016/j.wneu.2019.07.013
[37]  Rao, S.B., Vasquez, G., Harrop, J., et al. (2011) Risk Factors for Surgical Site Infections following Spinal Fusion Procedures: A Case-Control Study. Clinical Infectious Diseases, 53, 686-692.
https://doi.org/10.1093/cid/cir506
[38]  Sheffield, C.W., Sessler, D.I., Hunt, T.K., et al. (1994) Mild Hy-pothermia during Halothane-Induced Anesthesia Decreases Resistance to Staphylococcus aureus Dermal Infection in Guinea Pigs. Wound Repair and Regeneration, 2, 48-56.
https://doi.org/10.1046/j.1524-475X.1994.20108.x
[39]  Seidelman, J.L., Mantyh, C.R. and Anderson, D.J. (2023) Surgical Site Infection Prevention: A Review. JAMA, 329, 244-252.
https://doi.org/10.1001/jama.2022.24075
[40]  Zucconi, G., Marchello, A.M., Demarco, C., Fortina, E. and Milano, L. (2022) Health Technology Assessment for the Prevention of Peri-Operative Hypothermia: Evaluation of the Correct Use of Forced-Air Warming Systems in an Italian Hospital. International Journal of Environmental Research and Public Health, 20, Article 133.
https://doi.org/10.3390/ijerph20010133
[41]  Yuan, S., Zhang, T., Zhang, D., et al. (2022) Impact of Negative Pressure Wound Treatment on Incidence of Surgical Site Infection in Varied Orthopedic Surgeries: A Systematic Review and Meta-Analysis. International Wound Journal, 20, 2334-2345.
https://doi.org/10.1111/iwj.14043
[42]  Norman, G., Shi, C., Goh, E.L., et al. (2022) Negative Pressure Wound Therapy for Surgical Wounds Healing by Primary Closure. Cochrane Database of Systematic Reviews, No. 4, CD009261.
https://doi.org/10.1002/14651858.CD009261.pub7
[43]  Tsantes, A.G., Papadopoulos, D.V., Vrioni, G., et al. (2020) Spinal Infections: An Update. Microorganisms, 8, Article 476.
https://doi.org/10.3390/microorganisms8040476
[44]  Long, D.R., Bryson-Cahn, C., Pergamit, R., et al. (2021) 2021 Young Investigator Award Winner: Anatomic Gradients in the Microbiology of Spinal Fusion Surgical Site Infec-tion and Resistance to Surgical Antimicrobial Prophylaxis. Spine, 46, 143-151.
https://doi.org/10.1097/BRS.0000000000003603
[45]  Alverdy, J.C., Hyman, N. and Gilbert, J. (2020) Re-Examining Causes of Surgical Site Infections following Elective Surgery in the Era of Asepsis. The Lancet Infectious Diseases, 20, e38-e43.
https://doi.org/10.1016/S1473-3099(19)30756-X
[46]  Lu, Y.A., Wang, L., Tian, H.B., et al. (2023) Association between Nasal Colonization of Staphylococcus aureus and Surgical Site Infections in Spinal Surgery Patients: A System-atic Review and Meta-Analysis. European Review for Medical and Pharmacological Sciences, 27, 417-425.
[47]  Ning, J., Wang, J., Zhang, S.Z. and Sha, X.J. (2020) Nasal Colonization of Staphylococcus aureus and the Risk of Surgical Site Infection after Spine Surgery: A Meta-Analysis. The Spine Journal, 20, 448-456.
https://doi.org/10.1016/j.spinee.2019.10.009
[48]  Wang, F., Meng, J., Zhang, L., et al. (2018) Morphine Induces Changes in the Gut Microbiome and Metabolome in a Morphine Dependence Model. Scientific Reports, 8, Article 3596.
https://doi.org/10.1038/s41598-018-21915-8
[49]  Ashley, S.L., Sjoding, M.W., Popova, A.P., et al. (2020) Lung and Gut Microbiota Are Altered by Hyperoxia and Contribute to Oxygen-Induced Lung Injury in Mice. Science Transla-tional Medicine, 12, eaau9959.
https://doi.org/10.1126/scitranslmed.aau9959
[50]  Rabin, N., Zheng, Y., Opoku-Temeng, C., et al. (2015) Biofilm Formation Mechanisms and Targets for Developing Antibiofilm Agents. Future Medicinal Chemistry, 7, 493-512.
https://doi.org/10.4155/fmc.15.6
[51]  Imani, I.M., Kim, B., Xiao, X., et al. (2023) Ultrasound-Driven On-Demand Transient Triboelectric Nanogenerator for Subcutaneous Antibacterial Activity. Advanced Science, 10, e2204801.
https://doi.org/10.1002/advs.202204801

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133