|
突发事件网络舆情传播及情感分析——以3.21东航MU5375坠机事件为例
|
Abstract:
随着互联网的迅速发展,网民规模的逐渐扩大,非常规突发事件对公众的影响不容小觑。本文以东航MU5375坠机事件为例,通过八爪鱼爬虫技术进行一定期间内有关该事件的数据挖掘,基于复杂社会网络、传播模型理论和语义网络图等对舆情扩散进行关键用户识别、发展趋势分析和文本情感分析。由此得出结论:以央视新闻和“来去之间”大V用户为代表的关键用户成为事件传播的意见领袖,且该事件传播和演化大体符合经典的SEIR传播机制;同时发现社会公众对于东航MU5375坠机事件保持负面态度的居多,但呈现出正向态度的公众是多于中立态度的。针对此本文从平台管控、媒体引导和监管干预三个方面最终给出非常规突发事件网络舆情的相应干预措施建议,从而更好地实现微博等社交平台信息良性循环。
With the rapid development of the Internet and the gradual expansion of the scale of netizens, the impact of unconventional emergencies on the public cannot be underestimated. Taking the China Eastern Airlines MU5375 crash as an example, this paper conducts data mining on the event within a certain period through octopus crawler technology, and conducts key user identification, development trend analysis and sentiment analysis on public opinion diffusion based on complex social networks, communication model theory and Semantic network maps. It is concluded that the key users represented by CCTV News and “between come and go” big V users become the Opinion leader of event communication, and the event communication and evolution generally conform to the classic SEIR communication mechanism; At the same time, it was found that the majority of the public held a negative attitude towards the China Eastern Airlines MU5375 crash, but more showed a positive attitude than a neutral attitude. In response to this, this article provides corresponding intervention measures and suggestions for unconventional unexpected online public opinion from three aspects: platform control, media guidance, and regulatory intervention, in order to better achieve a virtuous cycle of information on social platforms such as Weibo.
[1] | 刘国巍, 程国辉, 姜金贵. 时空分异视角下非常规突发事件网络舆情演化研究——以“上海12.31踩踏事件”为例[J]. 情报杂志, 2015, 34(6): 126-130+150. |
[2] | 孙钦莹, 任晓丽. 基于双重失衡环境的网络舆情演化机理与治理策略研究[J]. 情报杂志, 2023, 42(4): 98-106. |
[3] | 满媛媛, 刘佳宁. 国内突发事件网络舆情研究进展[J]. 情报科学, 2020, 38(12): 170-177. |
[4] | 何奇龙, 罗兴, 王先甲. 突发危机事件负面网络舆情化解的随机演化博弈分析[J]. 经济与管理, 2023, 37(2): 20-29. |
[5] | 祁凯, 彭程, 杨志, 等. 基于SEIR演化博弈模型的突发危机事件网络舆情治理研究[J]. 现代情报, 2022, 42(4): 120-133. |
[6] | 邵琦, 牟冬梅, 王萍, 等. 基于语义的突发公共卫生事件网络舆情主题发现研究[J]. 数据分析与知识发现, 2020, 4(9): 68-80. |
[7] | 曹树金, 岳文玉. 突发公共卫生事件微博舆情主题挖掘与演化分析[J]. 信息资源管理学报, 2020, 10(6): 28-37. |
[8] | 谢媛, 李本乾. 新媒体环境下突发环境事件网络舆情风险信息感知模型[J]. 现代情报, 2023, 43(6): 158-165. |
[9] | 李玥琪, 王晰巍, 王楠阿雪, 等. 突发事件下社交媒体网络舆情风险识别及预警模型研究[J]. 情报学报, 2022, 41(10): 1085-1099. |
[10] | 彭希羡, 朱庆华, 刘璇. 微博客用户特征分析及分类研究——以“新浪微博”为例[J]. 情报科学, 2015(1): 69-75. |
[11] | 万钰珏, 李世银, 房子豪, 折亚亚, 王雨秋, 王帆, 景兴鹏. 基于SNA的突发事件网络舆情意见领袖传播影响力[J]. 西安科技大学学报, 2022, 42(2): 290-298. |
[12] | 邱泽国, 贺百艳. 基于文本挖掘的网络舆情主题发现与情感分析[J]. 对外贸, 2021(2): 76-79. |
[13] | 刘迪, 张会来. 网络舆情治理中意见领袖舆论引导的研究热点和前沿探析[J]. 现代情报, 2020, 40(9): 144-155. |
[14] | 庄文英, 许英姿, 任俊玲, 王兴芬. 突发事件舆情演化与治理研究——基于拓展多意见竞争演化模型[J]. 情报杂志, 2021, 40(12): 127-134+185. |