|
肠道菌群与肺癌免疫治疗的研究进展
|
Abstract:
肠道菌群与人体共同进化,通过代谢、炎症、免疫等方面参与维持人体健康。人类与微生物之间存在一定的动态平衡,但不当饮食、各种医疗措施打破这种平衡状态,导致菌群失调,继而引起各种疾病。肠道菌群在肿瘤诊断和治疗方面是目前的研究热点。在肺癌的治疗中,免疫疗法应用广泛且发挥了很好的作用,但不同人群对免疫治疗的疗效以及不良反应存在很大差异。大量研究表明肠道菌群与肺癌的发生发展以及免疫治疗均有关联。本文将对肺癌患者肠道菌群与免疫治疗的研究进展进行综述,探讨肠道菌群对于肺癌的发生、免疫治疗疗效、免疫相关不良事件的影响,以及目前能够通过干预肠道菌群增加免疫治疗疗效的方法。
The gut microbiota has co-evolved with the human body and participates in maintaining human health through metabolism, inflammation, immunity, and other aspects. There is a certain dynamic balance between humans and microorganisms, but improper diet and various medical measures disrupt this equilibrium and lead to gut microbiota dysbiosis, which subsequently causes various diseases. Gut microbiota is a current research hotspot in tumor diagnosis and treatment. In the treatment of lung cancer, immunotherapy is widely used and has played a good role, but the efficacy and adverse effects of immunotherapy vary greatly among different populations. Numerous studies have shown that gut microbiota is associated with the development of lung cancer and immuno-therapy. In this paper, we review the current research on gut microbiota and immunotherapy in lung cancer patients, and discuss the effects of gut microbiota on lung cancer development, immu-notherapy efficacy and immune-related adverse events, as well as the current methods to increase the efficacy of immunotherapy through gut microbiota intervention.
[1] | Van de Wiele, T., Van Praet, J.T., Marzorati, M., Drennan, M.B. and Elewaut, D. (2016) How the Microbiota Shapes Rheumatic Diseases. Nature Reviews Rheumatology, 12, 398-411. https://doi.org/10.1038/nrrheum.2016.85 |
[2] | Lynch, S.V. and Pedersen, O. (2016) The Human Intestinal Micro-biome in Health and Disease. The New England Journal of Medicine, 375, 2369-2379. https://doi.org/10.1056/NEJMra1600266 |
[3] | Zhuang, H., Cheng, L., Wang, Y., et al. (2019) Dysbiosis of the Gut Microbiome in Lung Cancer. Frontiers in Cellular and Infection Microbiology, 9, Article 112. https://doi.org/10.3389/fcimb.2019.00112 |
[4] | Zheng, Y., Fang, Z., Xue, Y., et al. (2020) Specific Gut Microbi-ome Signature Predicts the Early-Stage Lung Cancer. Gut Microbes, 11, 1030-1042. https://doi.org/10.1080/19490976.2020.1737487 |
[5] | Vernocchi, P., Gili, T., Conte, F., et al. (2020) Network Analysis of Gut Microbiome and Metabolome to Discover Microbiota-Linked Biomarkers in Patients Affected by Non-Small Cell Lung Cancer. International Journal of Molecular Sciences, 21, Article 8730. https://doi.org/10.3390/ijms21228730 |
[6] | 袁文杰, 郭亚琼, 韩毅, 等. 非小细胞肺癌患者肠道微生物特征分析[J]. 微生物学报, 2021, 61(9): 2776-2790. |
[7] | 安瑞. 肺癌患者肠道微生物群落结构特征的初步研究[D]: [硕士或博士学位论文]. 杭州: 南京医科大学, 2021. |
[8] | Liu, F., Li, J., Guan, Y., et al. (2019) Dysbiosis of the Gut Mi-crobiome Is Associated with Tumor Biomarkers in Lung Cancer. International Journal of Biological Sciences, 15, 2381-2392. https://doi.org/10.7150/ijbs.35980 |
[9] | Weinberg, F., Dickson, R.P., Nagrath, D. and Ramnath, N. (2020) The Lung Microbiome: A Central Mediator of Host Inflammation and Metabolism in Lung Cancer Patients? Cancers, 13, Article 13.
https://doi.org/10.3390/cancers13010013 |
[10] | Lu, H., Gao, N.L., Tong, F., et al. (2021) Alterations of the Human Lung and Gut Microbiomes in Non-Small Cell Lung Carcinomas and Distant Metastasis. Microbiology Spectrum, 9, e00802-21.
https://doi.org/10.1128/Spectrum.00802-21 |
[11] | Ma, Y., Qiu, M.T., Wang, S.S., et al. (2021) Distinct Tumor Bac-terial Microbiome in Lung Adenocarcinomas Manifested as Radiological Subsolid Nodules. Translational Oncology, 14, Article ID: 101050.
https://doi.org/10.1016/j.tranon.2021.101050 |
[12] | Lim, M.Y., Hong, S., Hwang, K.H., et al. (2021) Diagnostic and Prognostic Potential of the Oral and Gut Microbiome for Lung Adenocarcinoma. Clinical and Translational Medicine, 11, e508. https://doi.org/10.1002/ctm2.508 |
[13] | He, Y., Wen, Q., Yao, F., et al. (2017) Gut-Lung Axis: The Microbial Contributions and Clinical Implications. Critical Reviews in Microbiology, 43, 81-95. https://doi.org/10.1080/1040841X.2016.1176988 |
[14] | Schuijt, T.J., Lankelma, J.M., Scicluna, B.P., et al. (2016) The Gut Microbiota Plays a Protective Role in the Host Defence against Pneumococcal Pneumonia. Gut, 65, 575-583. https://doi.org/10.1136/gutjnl-2015-309728 |
[15] | Atarashi, K., Tanoue, T., Ando, M., et al. (2015) Th17 Cell In-duction by Adhesion of Microbes to Intestinal Epithelial Cells. Cell, 163, 367-380. https://doi.org/10.1016/j.cell.2015.08.058 |
[16] | Bradley, C.P., Teng, F., Felix, K.M., et al. (2017) Segmented Fila-mentous Bacteria Provoke Lung Autoimmunity by Inducing Gut-Lung Axis Th17 Cells Expressing Dual TCRs. Cell Host Microbe, 2, 697-704.E4.
https://doi.org/10.1016/j.chom.2017.10.007 |
[17] | Birchenough, G.M., Nystrom, E.E., Johansson, M.E., et al. (2016) A Sentinel Goblet Cell Guards the Colonic Crypt by Triggering Nlrp6-Dependent Muc2 Secretion. Science, 352, 1535-1542. https://doi.org/10.1126/science.aaf7419 |
[18] | Gui, Q., Li, H., Wang, A., et al. (2020) The Association between Gut Butyrate-Producing Bacteria and Non-Small-Cell Lung Cancer. Journal of Clinical Laboratory Analysis, 34, e23318. https://doi.org/10.1002/jcla.23318 |
[19] | Dang, A.T. and Marsland, B.J. (2019) Microbes, Metabolites, and the Gut-Lung Axis. Mucosal Immunology, 12, 843-850. https://doi.org/10.1038/s41385-019-0160-6 |
[20] | Tan, J., McKenzie, C., Potamitis, M., et al. (2014) The Role of Short-Chain Fatty Acids in Health and Disease. Advances in Im-munology, 121, 91-119. https://doi.org/10.1016/B978-0-12-800100-4.00003-9 |
[21] | Chang, P.V., Hao, L., Offer-manns, S. and Medzhitov, R. (2014) The Microbial Metabolite Butyrate Regulates Intestinal Macrophage Function via Histone Deacetylase Inhibition. Proceedings of the National Academy of Sciences of the United States of America, 111, 2247-2252. https://doi.org/10.1073/pnas.1322269111 |
[22] | Vieira, R.S., Castoldi, A., Basso, P.J., et al. (2019) Bu-tyrate Attenuates Lung Inflammation by Negatively Modulating Th9 Cells. Frontiers in Immunology, 10, Article 67. https://doi.org/10.3389/fimmu.2019.00067 |
[23] | Bachem, A., Makhlouf, C., Binger, K.J., et al. (2019) Microbio-ta-Derived Short-Chain Fatty Acids Promote the Memory Potential of Antigen-Activated CD8+ T Cells. Immunity, 51, 285-297.E5.
https://doi.org/10.1016/j.immuni.2019.06.002 |
[24] | Kim, K., Kwon, O., Ryu, T.Y., et al. (2019) Propionate of a Microbiota Metabolite Induces Cell Apoptosis and Cell Cycle Arrest in Lung Cancer. Molecular Medicine Reports, 20, 1569-1574. https://doi.org/10.3892/mmr.2019.10431 |
[25] | Gaucher, L., Adda, L., Séjourné, A., et al. (2021) Asso-ciations between Dysbiosis-Inducing Drugs, Overall Survival and Tumor Response in Patients Treated with Immune Checkpoint Inhibitors. Therapeutic Advances in Medical Oncology, 13. https://doi.org/10.1177/17588359211000591 |
[26] | Tinsley, N., Zhou, C., Tan, G., et al. (2020) Cumulative Antibi-otic Use Significantly Decreases Efficacy of Checkpoint Inhibitors in Patients with Advanced Cancer. Oncologist, 25, 55-63. https://doi.org/10.1634/theoncologist.2019-0160 |
[27] | Derosa, L., Hellmann, M.D., Spaziano, M., et al. (2018) Negative Association of Antibiotics on Clinical Activity of Immune Checkpoint Inhibitors in Patients with Ad-vanced Renal Cell and Non-Small-Cell Lung Cancer. Annals of Oncology, 29, 1437-1444. https://doi.org/10.1093/annonc/mdy103 |
[28] | Ochi, N., Ichihara, E., Takigawa, N., et al. (2021) The Effects of An-tibiotics on the Efficacy of Immune Checkpoint Inhibitors in Patients with Non-Small-Cell Lung Cancer Differ Based on PD-L1 Expression. European Journal of Cancer, 149, 73-81. https://doi.org/10.1016/j.ejca.2021.02.040 |
[29] | Hakozaki, T., Richard, C., Elkrief, A., et al. (2020) The Gut Micro-biome Associates with Immune Checkpoint Inhibition Outcomes in Patients with Advanced Non-Small Cell Lung Cancer. Cancer Immunology Research, 8, 1243-1250.
https://doi.org/10.1158/2326-6066.CIR-20-0196 |
[30] | Ouaknine Krief, J., de Tauriers P.H., Dumenil, C., et al. (2019) Role of Antibiotic Use, Plasma Citrulline and Blood Microbiome in Advanced Non-Small Cell Lung Cancer Pa-tients Treated with Nivolumab. Journal for ImmunoTherapy of Cancer, 7, Article 176. https://doi.org/10.1186/s40425-019-0658-1 |
[31] | Nyein, A.F., Bari, S., Hogue, S., et al. (2022) Effect of Prior An-tibiotic or Chemotherapy Treatment on Immunotherapy Response in Non-Small Cell Lung Cancer. BMC Cancer, 22, Ar-ticle No. 101.
https://doi.org/10.1186/s12885-022-09210-2 |
[32] | Itzstein, M.S.V., Gonugunta, A.S., Sheffield, T., et al. (2022) Association between Antibiotic Exposure and Systemic Immune Parameters in Cancer Patients Receiving Checkpoint In-hibitor Therapy. Cancers, 14, Article 1327.
https://doi.org/10.3390/cancers14051327 |
[33] | Zhang, F., Ferrero, M., Dong, N., et al. (2021) Analysis of the Gut Microbiota: An Emerging Source of Biomarkers for Immune Checkpoint Blockade Therapy in Non-Small Cell Lung Cancer. Cancers, 13, Article 2514.
https://doi.org/10.3390/cancers13112514 |
[34] | Verschueren, M.V., van der Welle, C.M.C., Tonn, M., et al. (2021) The Association between Gut Microbiome Affecting Concomitant Medication and the Effectiveness of Immunotherapy in Patients with Stage IV NSCLC. Scientific Reports, 11, Article No. 23331. https://doi.org/10.1038/s41598-021-02598-0 |
[35] | Zhang, C., Wang, J., Sun, Z., et al. (2021) Commensal Microbi-ota Contributes to Predicting the Response to Immune Checkpoint Inhibitors in Non-Small-Cell Lung Cancer Patients. Cancer Science, 112, 3005-3017.
https://doi.org/10.1111/cas.14979 |
[36] | Song, P., Yang, D., Wang, H., et al. (2020) Relationship between Intestinal Flora Structure and Metabolite Analysis and Immunotherapy Efficacy in Chinese NSCLC Patients. Thoracic Cancer, 11, 1621-1632.
https://doi.org/10.1111/1759-7714.13442 |
[37] | Boesch, M., Baty, F., Albrich, W.C., et al. (2021) Local Tumor Mi-crobial Signatures and Response to Checkpoint Blockade in Non-Small Cell Lung Cancer. Oncoimmunology, 10, Article 1988403.
https://doi.org/10.1080/2162402X.2021.1988403 |
[38] | Heshiki, Y., Vazquez-Uribe, R., Li, J., et al. (2020) Pre-dictable Modulation of Cancer Treatment Outcomes by the Gut Microbiota. Microbiome, 8, Article No. 28. https://doi.org/10.1186/s40168-020-00811-2 |
[39] | Botticelli, A., Vernocchi, P., Marini, F., et al. (2020) Gut Metab-olomics Profiling of Non-Small Cell Lung Cancer (NSCLC) Patients under Immunotherapy Treatment. Journal of Translational Medicine, 18, Article No. 49.
https://doi.org/10.1186/s12967-020-02231-0 |
[40] | Liu, T., Xiong, Q., Li, L.L. And Hu, Y. (2019) Intestinal Micro-biota Predicts Lung Cancer Patients at Risk of Immune-Related Diarrhea. Immunotherapy, 11, 385-396. https://doi.org/10.2217/imt-2018-0144 |
[41] | Chau, J., Yadav, M., Liu, B., et al. (2021) Prospective Correlation be-tween the Patient Microbiome with Response to and Development of Immune-Mediated Adverse Effects to Immuno-therapy in Lung Cancer. BMC Cancer, 21, Article No. 808. https://doi.org/10.1186/s12885-021-08530-z |
[42] | Yang, J.J., Yu, D.X. and Shu, X.O. (2020) Association of Dietary Fiber and Yogurt Consumption with Lung Cancer Risk: A Pooled Analysis. JAMA Oncology, 6, 788-789. https://doi.org/10.1001/jamaoncol.2020.0270 |
[43] | Tomita, Y., Ikeda, T., Sakata, S., et al. (2020) Association of Probiotic Clostridium butyricum Therapy with Survival and Response to Immune Checkpoint Blockade in Patients with Lung Cancer. Cancer Immunology Research, 8, 1236-1242. https://doi.org/10.1158/2326-6066.CIR-20-0051 |
[44] | Messaoudene, M., Pidgeon, R., Richard, C., et al. (2022) A Natural Polyphenol Exerts Antitumor Activity and Circumvents Anti-PD-1 Resistance through Effects on the Gut Micro-biota. Cancer Discovery, 12, 1070-1087.
https://doi.org/10.1158/2159-8290.CD-21-0808 |
[45] | Lee, S.H., Cho, S.Y., Yoon, Y., et al. (2021) Bifidobacterium bifidum Strains Synergize with Immune Checkpoint Inhibitors to Reduce Tumour Burden in Mice. Nature Microbiology, 6, 277-288.
https://doi.org/10.1038/s41564-020-00831-6 |
[46] | Huang, J.M., Liu, D., Wang, Y.W., et al. (2022) Ginseng Poly-saccharides Alter the Gut Microbiota and Kynurenine/Tryptophan Ratio, Potentiating the Antitumour Effect of Antipro-grammed Cell Death 1/Programmed Cell Death Ligand 1 (Anti-PD-1/PD-L1) Immunotherapy. Gut, 71, 734-745. https://doi.org/10.1136/gutjnl-2020-321031 |
[47] | Routy, B., Le Chatelier, E., Derosa, L., et al. (2018) Gut Micro-biome Influences Efficacy of PD-1-Based Immunotherapy against Epithelial Tumors. Science, 359, 91-97. |
[48] | Tanoue, T., Morita, S., Plichta, D.R., et al. (2019) A Defined Commensal Consortium Elicits CD8 T Cells and Anti-Cancer Im-munity. Nature, 565, 600-605. https://doi.org/10.1038/s41586-019-0878-z |