|
结核分枝杆菌特点及诊断新进展
|
Abstract:
由于全球结核病发病人数、耐药率、死亡人数近年来再次出现上升趋势,而病原学诊断阳性率较低,使得加强对结核分枝杆菌的感染诊断成为必要。结核分枝杆菌感染后,机体通过细胞免疫及体液免疫反应应答,主要为细胞免疫,结核分枝杆菌细胞壁上的一些高特异性免疫学相关物质具有诊断潜力。近年来,不断有专家学者对结核分枝杆菌的感染诊断提出了新的研究方向,包括病原学、分子生物学、免疫学诊断试验,这提高了临床诊断准确率与及时性。本文就结核分枝杆菌特点及感染诊断新进展作相应的综述。
The global trend of increasing number of TB incidence, drug resistance and deaths again in recent years and the low rate of positive pathogenic diagnosis make it necessary to enhance the diagnosis of Mycobacterium tuberculosis infection. After Mycobacterium tuberculosis infection, the organism responds through cellular and humoral immune responses, mainly cellular immunity, and some highly specific immunologically relevant substances produced and released during this process have diagnostic potential. In recent years, experts and scholars have continuously proposed new research directions for the diagnosis of Mycobacterium tuberculosis infection, including pathogene-sis, molecular biology, and immunological diagnostic tests, which have improved the accuracy and timeliness of clinical diagnosis. Therefore, this paper provides a review based on the new advances in the diagnosis of Mycobacterium tuberculosis infection.
[1] | Bagcchi, S. (2023) WHO’s Global Tuberculosis Report 2022. Lancet Microbe, 4, e20.
https://doi.org/10.1016/S2666-5247(22)00359-7 |
[2] | 陆霓虹, 李杰. 结核分枝杆菌致肺损伤的研究进展[J]. 中国医药科学, 2022, 12(16): 33-36. |
[3] | Xu, X., Dong, B., Peng, L., et al. (2022) Anti-Tuberculosis Drug Develop-ment via Targeting the Cell Envelope of Mycobacterium tuberculosis. Frontiers in Microbiology, 13, Article 1056608.
https://doi.org/10.3389/fmicb.2022.1056608 |
[4] | Holzheimer, M., Buter, J. and Minnaard, A.J. (2021) Chemical Synthesis of Cell Wall Constituents of Mycobacterium tuberculosis. Chemical Reviews, 121, 9554-9643. https://doi.org/10.1021/acs.chemrev.1c00043 |
[5] | Wolf, A.J. and Underhill, D.M. (2018) Peptidoglycan Recogni-tion by the Innate Immune System. Nature Reviews Immunology, 18, 243-254. https://doi.org/10.1038/nri.2017.136 |
[6] | Silveiro, C., Marques, M., Oliven?a, F., et al. (2023) CRISPRi-Mediated Characterization of Novel Anti-Tuberculosis Targets: Mycobacterial Peptidoglycan Modifications Promote Beta-Lactam Resistance and Intracellular Survival. Frontiers in Cellular and Infection Microbiology, 13, Article 1089911. https://doi.org/10.3389/fcimb.2023.1089911 |
[7] | Yimcharoen, M., Saikaew, S., Wattananandkul, U., et al. (2022) The Regulation of ManLAM-Related Gene Expression in Mycobacterium tuberculosis with Different Drug Resistance Profiles Following Isoniazid Treatment. Infection and Drug Resistance, 15, 399-412. https://doi.org/10.2147/IDR.S346869 |
[8] | Encinas, M., Marfil, M.J., Garbaccio, S., et al. (2018) Mycobacterium bovis ESAT-6, CFP-10 and EspC Antigens Show High Conservation among Field Isolates. Tuberculosis, 111, 143-146. https://doi.org/10.1016/j.tube.2018.06.007 |
[9] | Rahlwes, K.C., Dias, B.R.S., Campos, P.C., et al. (2023) Patho-genicity and Virulence of Mycobacterium tuberculosis. Virulence, 14, Article 2150449. https://doi.org/10.1080/21505594.2022.2150449 |
[10] | 中华人民共和国国家卫生和计划生育委员会. 结核病分类(WS196-2017) [J]. 新发传染病电子杂志, 2018, 3(3): 191-192. https://doi.org/10.19871/j.cnki.xfcrbzz.2018.03.018 |
[11] | 丁勇, 许超, 吴季辉, 等. 表观遗传学研究进展[J]. 中国科学: 生命科学, 2017, 47(1): 3-15. |
[12] | Gan, B. (2023) Ferroptosis Hijacking by Mycobacterium tuberculosis. Nature Communications, 14, Article No. 1431.
https://doi.org/10.1038/s41467-023-37149-w |
[13] | 李玉雪, 柳晓金, 王薇, 等. 改良抗酸染色法在检测痰结核分枝杆菌中的应用[J]. 标记免疫分析与临床, 2018, 25(7): 1070-1073. |
[14] | 赵慧, 王春花, 孙蕊, 等. 萋-尼氏抗酸染色法和金胺O荧光染色法在结核分枝杆菌痰涂片检测中的对比[J]. 天津医科大学学报, 2018, 24(4): 357-360. |
[15] | 兰剑锋, 刘淑燕. 涂片法、L-J法、MGIT 960法及GeneXpert法检测在疑似肺结核患者临床诊断中的应用[J]. 中国医药科学, 2021, 11(15): 186-189, 203. |
[16] | Nurwidya, F., Handayani, D., Burhan, E., et al. (2018) Molecular Diagnosis of Tuberculosis. Chonnam Medical Journal, 54, 1-9. https://doi.org/10.4068/cmj.2018.54.1.1 |
[17] | 中华医学会结核病学分会临床检验专业委员会. 结核病病原学分子诊断专家共识[J]. 中华结核和呼吸杂志, 2018, 41(9): 688-695. |
[18] | Cao, Z., Wu, W., Wei, H., et al. (2020) Using Droplet Digital PCR in the Detection of Mycobacterium tuberculosis DNA in FFPE Samples. International Journal of Infectious Diseases, 99, 77-83.
https://doi.org/10.1016/j.ijid.2020.07.045 |
[19] | Lee, D.J., Kumarasamy, N., Resch, S.C., et al. (2019) Rapid, Point-of-Care Diagnosis of Tuberculosis with Novel Truenat Assay: Cost-Effectiveness Analysis for India’s Public Sec-tor. PLOS ONE, 14, e0218890.
https://doi.org/10.1371/journal.pone.0218890 |
[20] | 马俊, 沙巍. 结核病分子生物学诊断新技术的研究进展[J]. 同济大学学报(医学版), 2022, 43(4): 579-585. |
[21] | Yu, G., Shen, Y., Zhong, F., et al. (2022) Diagnostic Accuracy of Nanopore Sequencing Using Respiratory Specimens in the Diagnosis of Pulmonary Tuberculosis. International Journal of Infectious Diseases, 122, 237-243.
https://doi.org/10.1016/j.ijid.2022.06.001 |
[22] | 中国防痨协会, 夏辉, 王瑞白, 赵雁林. 结核分枝杆菌潜伏感染与活动性结核病的鉴别诊断[J]. 中国防痨杂志, 2023, 45(3): 253-259. |
[23] | 中国防痨协会, 中国防痨协会学校与儿童结核病防治专业分会, 《中国防痨杂志》编辑委员会. 重组结核杆菌融合蛋白(EC)临床应用专家共识[J]. 中国防痨杂志, 2020, 42(8): 761-768. |
[24] | Yu, J., Fan, X., Luan, X., et al. (2023) A Novel Multi-Component Protein Vaccine ECP001 Containing a Protein Polypeptide Antigen nPstS1 Riching in T-Cell Epitopes Showed Good Immuno-genicity and Protection in Mice. Frontiers in Immunology, 14, Article 1138818. https://doi.org/10.3389/fimmu.2023.1138818 |
[25] | 屈蓉, 吴康, 吴娟, 等. 结核分枝杆菌早期分泌蛋白MPT64的原核表达及其在结核病血清学诊断上的初步应用[J]. 中国生物制品学杂志, 2021, 34(5): 566-570. |
[26] | Ma, Z., Ji, X., Yang, H., et al. (2020) Screening and Evaluation of Mycobacterium tuberculosis Diagnostic Antigens. European Journal of Clinical Microbiology & Infectious Diseases, 39, 1959-1970.
https://doi.org/10.1007/s10096-020-03951-3 |
[27] | Chen, P., Meng, Y., Liu, T., et al. (2023) Sensitive Urine Im-munoassay for Visualization of Lipoarabinomannan for Noninvasive Tuberculosis Diagnosis. ACS Nano, 17, 6998-7006. https://doi.org/10.1021/acsnano.3c01374 |
[28] | Talreja, J., Peng, C., Nguyen, T.M., et al. (2023) Samavati L. Dis-covery of Novel Transketolase Epitopes and the Development of IgG-Based Tuberculosis Serodiagnostics. Microbiology Spectrum, 11, e0337722.
https://doi.org/10.1128/spectrum.03377-22 |