|
二肽基肽酶4抑制剂对老年2型糖尿病合并动脉粥样硬化调节作用的研究进展
|
Abstract:
二肽基肽酶4抑制剂近年来已在临床上广泛应用。越来越多的证据表明二肽基肽酶4抑制剂在2型糖尿病治疗中除了降血糖作用外,还具有对心血管系统的保护调节作用,临床中特别是对老年2型糖尿病合并动脉粥样硬化患者的治疗有一定的作用,但目前对二肽基肽酶4抑制剂在心血管方面的调节作用研究方面争议较大,本文就二肽基肽酶4抑制剂对动脉粥样硬化调节作用的研究进展进行总结和论述。
Dipeptidyl peptidase 4 inhibitors have been widely used in clinical practice in recent years. More and more evidence has shown that dipeptidyl peptidase 4 inhibitors have a protective regulatory effect on the cardiovascular system in addition to hypoglycemic effect in the treatment of type 2 di-abetes mellitus, especially in the treatment of elderly patients with type 2 diabetes mellitus com-plicated with atherosclerosis. However, the research on the regulatory effect of dipeptidyl peptidase 4 inhibitors on cardiovascular aspects is controversial. In this paper, the research progress of di-peptidyl peptidase 4 inhibitors against atherosclerosis is summarized and discussed.
[1] | Kenny, H.C. and Abel, E.D. (2019) Heart Failure in Type 2 Diabetes Mellitus. Circulation Research, 124, 121-141.
https://doi.org/10.1161/CIRCRESAHA.118.311371 |
[2] | Bell, D.S.H. and Goncalves, E. (2019) Heart Failure in the Patient with Diabetes: Epidemiology, Aetiology, Prognosis, Therapy and the Effect of Glucose-Lowering Medications. Diabetes, Obesity & Metabolism, 21, 1277-1290.
https://doi.org/10.1111/dom.13652 |
[3] | Liu, X., Mei, T., Chen, W., et al. (2017) Comparison of Antidiabetic Med-ications during the Treatment of Atherosclerosis in T2DM Patients. Mediators of Inflammation, 2017, Article ID: 5032708. https://doi.org/10.1155/2017/5032708 |
[4] | Duan, L., Rao, X., Braunstein, Z., et al. (2017) Role of In-cretin Axis in Inflammatory Bowel Disease. Frontiers in Immunology, 8, Article No. 1734. https://doi.org/10.3389/fimmu.2017.01734 |
[5] | Zhong, J., Rao, X. and Rajagopalan, S. (2013) An Emerging Role of Dipeptidyl Peptidase 4 (DPP4) beyond Glucose Control: Potential Implications in Cardiovascular Disease. Athero-sclerosis, 226, 305-314.
https://doi.org/10.1016/j.atherosclerosis.2012.09.012 |
[6] | Zhong, J., Maiseyeu, A., Davis, S.N., et al. (2015) DPP4 in Cardiometabolic Disease: Recent Insights from the Laboratory and Clinical Trials of DPP4 Inhibition. Circula-tion Research, 116, 1491-1504.
https://doi.org/10.1161/CIRCRESAHA.116.305665 |
[7] | Drucker, D.J. (2007) Dipeptidyl Peptidase-4 Inhibition and the Treatment of Type 2 Diabetes: Preclinical Biology and Mechanisms of Action. Diabetes Care, 30, 1335-1343. https://doi.org/10.2337/dc07-0228 |
[8] | Abbott, C.A., Baker, E., Sutherland, G.R., et al. (1994) Genomic Organiza-tion, Exact Localization, and Tissue Expression of the Human CD26 (Dipeptidyl Peptidase IV) Gene. Immunogenetics, 40, 331-338.
https://doi.org/10.1007/BF01246674 |
[9] | Casrouge, A., Sauer, A.V., et al. (2018) Lymphocytes Are a Major Source of Circulating Soluble Dipeptidyl Peptidase 4. Clinical and Experimental Immunology, 194, 166-179. https://doi.org/10.1111/cei.13163 |
[10] | Lettau, M., Dietz, M., Vollmers, S., et al. (2020) Degranulation of Human Cytotoxic Lymphocytes Is a Major Source of Proteolytically Active Soluble CD26/DPP4. Cellular and Molecular Life Sciences: CMLS, 77, 751-764.
https://doi.org/10.1007/s00018-019-03207-0 |
[11] | Mortensen, K., Christensen, L.L., Holst, J.J., et al. (2003) GLP-1 and GIP Are Colocalized in a Subset of Endocrine Cells in the Small Intestine. Regulatory Peptides, 114, 189-196. https://doi.org/10.1016/S0167-0115(03)00125-3 |
[12] | Maruhashi, T. and Higashi, Y. (2021) Pathophysiological Association between Diabetes Mellitus and Endothelial Dysfunction. Antioxidants (Basel, Switzerland), 10, Article No. 1306. https://doi.org/10.3390/antiox10081306 |
[13] | Yuan, T., Yang, T., Chen, H., et al. (2019) New Insights into Oxidative Stress and Inflammation during Diabetes Mellitus-Accelerated Atherosclerosis. Redox Biology, 20, 247-260. https://doi.org/10.1016/j.redox.2018.09.025 |
[14] | Iacobini, C., Vitale, M., Pesce, C., et al. (2021) Diabetic Compli-cations and Oxidative Stress: A 20-Year Voyage Back in Time and Back to the Future. Antioxidants (Basel, Switzerland), 10, Article No. 727.
https://doi.org/10.3390/antiox10050727 |
[15] | Shah, M.S. and Brownlee, M. (2016) Molecular and Cellular Mecha-nisms of Cardiovascular Disorders in Diabetes. Circulation Research, 118, 1808-1829. https://doi.org/10.1161/CIRCRESAHA.116.306923 |
[16] | Eriksson, L. and Nystr?m, T. (2015) Antidiabetic Agents and Endothelial Dysfunction—Beyond Glucose Control. Basic & Clinical Pharmacology & Toxicology, 117, 15-25. https://doi.org/10.1111/bcpt.12402 |
[17] | Matsubara, J., Sugiyama, S., Akiyama, E., et al. (2013) Dipeptidyl Pepti-dase-4 Inhibitor, Sitagliptin, Improves Endothelial Dysfunction in Association with Its Anti-Inflammatory Effects in Pa-tients with Coronary Artery Disease and Uncontrolled Diabetes. Circulation Journal: Official Journal of the Japanese Circulation Society, 77, 1337-1344.
https://doi.org/10.1253/circj.CJ-12-1168 |
[18] | Davignon, J. and Ganz, P. (2004) Role of Endothelial Dysfunction in Atherosclerosis. Circulation, 109, III27-III32.
https://doi.org/10.1161/01.CIR.0000131515.03336.f8 |
[19] | Golpon, H.A., Puechner, A., Welte, T., et al. (2001) Vasorelaxant Effect of Glucagon-Like Peptide-(7-36)amide and Amylin on the Pulmonary Circulation of the Rat. Regu-latory Peptides, 102, 81-86.
https://doi.org/10.1016/S0167-0115(01)00300-7 |
[20] | Matsubara, J., Sugiyama, S., Sugamura, K., et al. (2012) A Dipeptidyl Peptidase-4 Inhibitor, Des-Fluoro-Sitagliptin, Improves Endothelial Function and Reduces Atherosclerotic Lesion Formation in Apolipoprotein E-Deficient Mice. Journal of the American College of Cardiology, 59, 265-276. https://doi.org/10.1016/j.jacc.2011.07.053 |
[21] | Zakaria, E.M., Tawfeek, W.M., Hassanin, M.H., et al. (2022) Car-diovascular Protection by DPP-4 Inhibitors in Preclinical Studies: An Updated Review of Molecular Mechanisms. Naunyn-Schmiedeberg’s Archives of Pharmacology, 395, 1357-1372. https://doi.org/10.1007/s00210-022-02279-3 |
[22] | Wei, R., Ma, S., Wang, C., et al. (2016) Exenatide Exerts Direct Protective Effects on Endothelial Cells through the AMPK/Akt/eNOS Pathway in a GLP-1 Receptor-Dependent Manner. American Journal of Physiology. Endocrinology and Metabolism, 310, E947-E957. https://doi.org/10.1152/ajpendo.00400.2015 |
[23] | Rizzo, M., Nikolic, D., Patti, A.M., et al. (2018) GLP-1 Receptor Agonists and Reduction of Cardiometabolic Risk: Potential Underlying Mechanisms. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1864, 2814-2821.
https://doi.org/10.1016/j.bbadis.2018.05.012 |
[24] | Koniari, I., Velissaris, D., Kounis, N.G., et al. (2022) An-ti-Diabetic Therapy, Heart Failure and Oxidative Stress: An Update. Journal of Clinical Medicine, 11, Article No. 4660. https://doi.org/10.3390/jcm11164660 |
[25] | Salim, H.M., Fukuda, D., Higashikuni, Y., et al. (2016) Dipeptidyl Pep-tidase-4 Inhibitor, Linagliptin, Ameliorates Endothelial Dysfunction and Atherogenesis in Normoglycemic Apolipopro-tein-E Deficient Mice. Vascular Pharmacology, 79, 16-23. https://doi.org/10.1016/j.vph.2015.08.011 |
[26] | Wang, X., Ke, J., Zhu, Y.J., et al. (2021) Dipeptidyl Peptidase-4 (DPP4) Inhibitor Sitagliptin Alleviates Liver Inflammation of Diabetic Mice by Acting as a ROS Scavenger and Inhibiting the NFκB Pathway. Cell Death Discovery, 7, Article No. 236. https://doi.org/10.1038/s41420-021-00625-7 |
[27] | Silva Júnior, W.S., Godoy-Matos, A.F. and Kraem-er-Aguiar, L.G. (2015) Dipeptidyl Peptidase 4: A New Link between Diabetes Mellitus and Atherosclerosis? BioMed Research International, 2015, Article ID: 816164.
https://doi.org/10.1155/2015/816164 |
[28] | Pala, L. and Rotella, C.M. (2013) The Role of DPP4 Activity in Cardio-vascular Districts: In Vivo and in Vitro Evidence. Journal of Diabetes Research, 2013, Article ID: 590456. https://doi.org/10.1155/2013/590456 |
[29] | Bigagli, E., Luceri, C., Dicembrini, I., et al. (2020) Effect of Dipep-tidyl-Peptidase 4 Inhibitors on Circulating Oxidative Stress Biomarkers in Patients with Type 2 Diabetes Mellitus. Anti-oxidants (Basel, Switzerland), 9, Article No. 233.
https://doi.org/10.3390/antiox9030233 |
[30] | Dai, Y., Dai, D., Wang, X., et al. (2014) DPP-4 Inhibitors Repress NLRP3 Inflammasome and Interleukin-1beta via GLP-1 Receptor in Macrophages through Protein Kinase C Pathway. Cardiovascular Drugs and Therapy, 28, 425-432.
https://doi.org/10.1007/s10557-014-6539-4 |
[31] | Salim, H.M., Fukuda, D., Higashikuni, Y., et al. (2017) Ten-eligliptin, a Dipeptidyl Peptidase-4 Inhibitor, Attenuated Pro-Inflammatory Phenotype of Perivascular Adipose Tissue and Inhibited Atherogenesis in Normoglycemic Apolipoprotein-E-Deficient Mice. Vascular Pharmacology, 96-98, 19-25. https://doi.org/10.1016/j.vph.2017.03.003 |
[32] | Chakraborti, C.K. (2015) Role of Adiponectin and Some Other Factors Linking Type 2 Diabetes Mellitus and Obesity. World Journal of Diabetes, 6, 1296-1308. https://doi.org/10.4239/wjd.v6.i15.1296 |
[33] | Hu, Y., Liu, H., Simpson, R.W., et al. (2013) GLP-1-Dependent and Independent Effects and Molecular Mechanisms of a Dipeptidyl Peptidase 4 Inhibitor in Vascular Endothelial Cells. Mo-lecular Biology Reports, 40, 2273-2279.
https://doi.org/10.1007/s11033-012-2361-x |
[34] | Shah, Z., Kampfrath, T., Deiuliis, J.A., et al. (2011) Long-Term Dipeptidyl-Peptidase 4 Inhibition Reduces Atherosclerosis and Inflammation via Effects on Monocyte Recruitment and Chemotaxis. Circulation, 124, 2338-2349.
https://doi.org/10.1161/CIRCULATIONAHA.111.041418 |
[35] | Kavurma, M.M., Rayner, K.J. and Karunakaran, D. (2017) The Walking Dead: Macrophage Inflammation and Death in Atherosclerosis. Current Opinion in Lipidology, 28, 91-98. https://doi.org/10.1097/MOL.0000000000000394 |
[36] | Shen, W.J., Azhar, S. and Kraemer, F.B. (2018) SR-B1: A Unique Multifunctional Receptor for Cholesterol Influx and Efflux. Annual Review of Physiology, 80, 95-116. https://doi.org/10.1146/annurev-physiol-021317-121550 |
[37] | Wang, H., Li, Y., Zhang, X., et al. (2020) DPP-4 In-hibitor Linagliptin Ameliorates Oxidized LDL-Induced THP-1 Macrophage Foam Cell Formation and Inflammation. Drug Design, Development and Therapy, 14, 3929-3940.
https://doi.org/10.2147/DDDT.S249846 |
[38] | Fenyo, I.M. and Gafencu, A.V. (2013) The Involvement of the Monocytes/Macrophages in Chronic Inflammation Associated with Atherosclerosis. Immunobiology, 218, 1376-1384. https://doi.org/10.1016/j.imbio.2013.06.005 |
[39] | Fadini, G.P., Bonora, B.M., Cappellari, R., et al. (2016) Acute Effects of Linagliptin on Progenitor Cells, Monocyte Phenotypes, and Soluble Mediators in Type 2 Diabetes. The Jour-nal of Clinical Endocrinology and Metabolism, 101, 748-756. https://doi.org/10.1210/jc.2015-3716 |
[40] | Ervinna, N., Mita, T., Yasunari, E., et al. (2013) Anagliptin, a DPP-4 Inhibitor, Suppresses Proliferation of Vascular Smooth Muscles and Monocyte Inflammatory Reaction and Attenuates Atherosclerosis in Male apoE-Deficient Mice. Endocri-nology, 154, 1260-1270. https://doi.org/10.1210/en.2012-1855 |
[41] | Hwang, H.J., Chung, H.S., Jung, T.W., et al. (2015) The Dipeptidyl Peptidase-IV Inhibitor Inhibits the Expression of Vascular Adhesion Molecules and Inflammatory Cytokines in HUVECs via Akt- and AMPK-Dependent Mechanisms. Molecular and Cellular Endocrinology, 405, 25-34. https://doi.org/10.1016/j.mce.2015.01.025 |
[42] | Brenner, C., Franz, W.M., Kühlenthal, S., et al. (2015) DPP-4 Inhibition Ameliorates Atherosclerosis by Priming Monocytes into M2 Macrophages. International Journal of Cardiology, 199, 163-169.
https://doi.org/10.1016/j.ijcard.2015.07.044 |