全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

脓毒症合并急性肾损伤的发病机制与最新治疗进展的研究
Research on the Pathogenesis and Recent Treatment Progress of Sepsis Combined with Acute Kidney Injury

DOI: 10.12677/ACM.2023.1381733, PP. 12362-12368

Keywords: 脓毒症,脓毒症合并急性肾损伤,脓毒症休克,炎症
Sepsis
, Sepsis Associated with Acute Kidney Injury, Septic Shock, Inflammation

Full-Text   Cite this paper   Add to My Lib

Abstract:

脓毒症合并急性肾损伤(S-AKI)是住院和危重患者常见的危及生命的并发症。S-AKI使住院死亡率增加6到8倍,患慢性肾脏病(CKD)的风险增加三倍。S-AKI的早期出现限制了预防性干预的影响,但为专注于逆转细胞损伤和促进适应性修复的治疗策略的发展打开了大门。为了适应这种变化,需要更好地理解脓毒症时肾小管上皮细胞(TEC)损伤的机制以及炎症反应,代谢重编程等。本文简要描述了目前对S-AKI的理解,以及其病理生理学的发展。
Sepsis associated with acute kidney injury (S-AKI) is a common life-threatening complication in hospitalized and critically ill patients. S-AKI increased in-hospital mortality 6- to 8-fold and 3-fold the risk of chronic kidney disease (CKD). The early emergence of S-AKI limits the impact of preven-tive interventions, but opens the door to the development of therapeutic strategies focused on re-versing cell damage and promoting adaptive repair. In order to adapt to this change, it is necessary to better understand the mechanism of renal tubular epithelial cell (TEC) injury in sepsis as well as the inflammatory response, metabolic reprogramming, etc. This paper briefly describes the current understanding of S-AKI, and the development of its pathophysiology.

References

[1]  Singer, M., Deutschman, C.S., Seymour, C.W., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (sepsis-3). JAMA, 315, 801-810.
https://doi.org/10.1001/jama.2016.0287
[2]  Minasyan, H. (2019) Sepsis: Mechanisms of Bacterial Injury to the Patient. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 27, Article No. 19.
https://doi.org/10.1186/s13049-019-0596-4
[3]  Yue, S., Li, S., Huang, X., et al. (2022) Construction and Validation of a Risk Prediction Model for Acute Kidney Injury in Patients Suffering from Septic Shock. Disease Markers, 2022, Article ID: 9367873.
https://doi.org/10.1155/2022/9367873
[4]  He, S., Gao, Q., Wu, X., et al. (2022) NAD+ Ameliorates Endotox-in-Induced Acute Kidney Injury in a Sirtuin1—Dependent Manner via GSK-3β/Nrf2 Signalling Pathway. Journal of Cellular and Molecular Medicine, 26, 1979-1993.
https://doi.org/10.1111/jcmm.17222
[5]  Peerapornratana, S., Manrique-Caballero, C.L., Gómez, H. and Kellum, J.A. (2019) Acute Kidney Injury from Sepsis: Current Concepts, Ep-idemiology, Pathophysiology, Prevention and Treatment. Kidney International, 96, 1083-1099.
https://doi.org/10.1016/j.kint.2019.05.026
[6]  Adhikari, N.K., Fowler, R.A., Bhagwanjee, S., et al. (2010) Critical Care and the Global Burden of Critical Illness in Adults. The Lancet, 376, 1339-1346.
https://doi.org/10.1016/S0140-6736(10)60446-1
[7]  Rosen, S. and Heyman, S.N. (2001) Difficulties in Under-standing Human “Acute Tubular Necrosis”: Limited Data and Flawed Animal Models. Kidney International, 60, 1220-1224.
https://doi.org/10.1046/j.1523-1755.2001.00930.x
[8]  Post, E.H., Kellum, J.A., Bellomo, R. and Vincent, J.L. (2017) Renal Perfusion in Sepsis: From Macro- to Microcirculation. Kidney International, 91, 45-60.
https://doi.org/10.1016/j.kint.2016.07.032
[9]  Seely, K.A., et al. (2011) Hemodynamic Changes in the Kidney in a Pediatric Rat Model of Sepsis-Induced Acute Kidney Injury. American Journal of Physiology-Renal Physiology, 301, F209-F217.
https://doi.org/10.1152/ajprenal.00687.2010
[10]  De Backer, D., et al. (2011) Microcirculatory Alterations: Poten-tial Mechanisms and Implications for Therapy. Annals of Intensive Care, 1, 27-27.
https://doi.org/10.1186/2110-5820-1-27
[11]  Gomez, H., et al. (2014) A Unified Theory of Sepsis-Induced Acute Kidney Injury: Inflammation, Microcirculatory Dysfunction, Bioenergetics, and the Tubular Cell Adaptation to Injury. Shock (Augusta, Ga.), 41, 3-11.
https://doi.org/10.1097/SHK.0000000000000052
[12]  Jang, H.R. and Rabb, H. (2015) Immune Cells in Experi-mental Acute Kidney Injury. Nature Reviews Nephrology, 11, 88-101.
https://doi.org/10.1038/nrneph.2014.180
[13]  Fry, D.E. (2012) Sepsis, Systemic Inflammatory Response, and Multiple Organ Dysfunction: The Mystery Continues. The American Surgeon, 78, 1-8.
https://doi.org/10.1177/000313481207800102
[14]  Novak, M.L. and Koh, T.J. (2013) Macrophage Phenotypes during Tissue Repair. Journal of Leukocyte Biology, 93, 875-881.
https://doi.org/10.1189/jlb.1012512
[15]  Gómez, H., Kellum, J.A. and Ronco, C. (2017) Metabolic Reprogramming and Tolerance during Sepsis-Induced AKI. Nature Reviews Nephrology, 13, 143-151.
https://doi.org/10.1038/nrneph.2016.186
[16]  Frauwirth, K.A., et al. (2002) The CD28 Signaling Pathway Regulates Glucose Metabolism. Immunity, 16, 769-777.
https://doi.org/10.1016/S1074-7613(02)00323-0
[17]  Manrique-Caballero, C.L., Del Rio-Pertuz, G. and Gomez, H. (2021) Sepsis-Associated Acute Kidney Injury. Critical Care Clinics, 37, 279-301.
https://doi.org/10.1016/j.ccc.2020.11.010
[18]  Hsiao, H.W., et al. (2012) The Decline of Autophagy Contributes to Proximal Tubular Dysfunction during Sepsis. Shock (Augusta, Ga.), 37, 289-296.
https://doi.org/10.1097/SHK.0b013e318240b52a
[19]  Jin, K., et al. (2020) Activation of AMP-Activated Protein Kinase during Sepsis/Inflammation Improves Survival by Preserving Cellular Metabolic Fitness. The FASEB Journal, 34, 7036-7057.
https://doi.org/10.1096/fj.201901900R
[20]  Haden, D.W., et al. (2007) Mitochondrial Biogenesis Re-stores Oxidative Metabolism during Staphylococcus aureus Sepsis. American Journal of Respiratory and Critical Care Medicine, 176, 768-777.
https://doi.org/10.1164/rccm.200701-161OC
[21]  Sun, J., et al. (2019) Mitochondria in Sepsis-Induced AKI. Journal of the American Society of Nephrology, 30, 1151-1161.
https://doi.org/10.1681/ASN.2018111126
[22]  Langenberg, C., Wan, L., Egi, M., May, C.N. and Bellomo, R. (2006) Renal Blood Flow in Experimental Septic Acute Renal Failure. Kidney International, 69, 1996-2002.
https://doi.org/10.1038/sj.ki.5000440
[23]  Maiden, M.J., et al. (2016) Structure and Function of the Kidney in Sep-tic Shock. A Prospective Controlled Experimental Study. American Journal of Respiratory and Critical Care Medicine, 194, 692-700.
https://doi.org/10.1164/rccm.201511-2285OC
[24]  Murugan, R., et al. (2010) Acute Kidney Injury in Non-Severe Pneumonia Is Associated with an Increased Immune Response and Lower Survival. Kidney International, 77, 527-535.
https://doi.org/10.1038/ki.2009.502
[25]  Takasu, O., et al. (2013) Mechanisms of Cardiac and Renal Dysfunction in Patients Dying of Sepsis. American Journal of Respiratory and Critical Care Medicine, 187, 509-517.
https://doi.org/10.1164/rccm.201211-1983OC
[26]  Khwaja, A. (2012) KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron. Clinical Practice, 120, c179-c184.
https://doi.org/10.1159/000339789
[27]  Perner, A., et al. (2012) Hydroxyethyl Starch 130/0.42 versus Ringer’s Acetate in Severe Sepsis. The New England Journal of Medicine, 367, 124-134.
https://doi.org/10.1056/NEJMoa1204242
[28]  Yunos, N.M., Bellomo, R., Glassford, N., Sutcliffe, H., Lam, Q. and Bailey, M. (2015) Chloride-Liberal vs. Chloride-Restrictive Intravenous Fluid Administration and Acute Kidney Injury: An Extended Analysis. Intensive Care Medicine, 41, 257-264.
https://doi.org/10.1007/s00134-014-3593-0
[29]  Semler, M.W., et al. (2018) Balanced Crystalloids versus Saline in Critically Ill Adults. The New England Journal of Medicine, 378, 829-839.
https://doi.org/10.1056/NEJMoa1711584
[30]  Semler, M.W., et al. (2017) Balanced Crystalloids versus Saline in the Intensive Care Unit. The SALT Randomized Trial. American Journal of Respiratory and Critical Care Medicine, 195, 1362-1372.
https://doi.org/10.1164/rccm.201607-1345OC
[31]  Caironi, P., et al. (2014) Albumin Replacement in Patients with Severe Sepsis or Septic Shock. The New England Journal of Medicine, 370, 1412-1421.
https://doi.org/10.1056/NEJMoa1305727
[32]  Rivers, E., et al. (2001) Early Goal-Directed Therapy in the Treat-ment of Severe Sepsis and Septic Shock. The New England Journal of Medicine, 345, 1368-1377.
https://doi.org/10.1056/NEJMoa010307
[33]  Asfar, P., et al. (2014) High versus Low Blood-Pressure Target in Patients with Septic Shock. The New England Journal of Medicine, 370, 1583-1593.
https://doi.org/10.1056/NEJMoa1312173
[34]  McMaster, P. and Shann, F. (2003) The Use of Extracorporeal Techniques to Remove Humoral Factors in Sepsis. Pediatric Critical Care Medicine, 4, 2-7.
https://doi.org/10.1097/00130478-200301000-00002
[35]  Vernon, D.D. and Sherbotie, J.R. (2010) Continuous Renal Replacement Therapy for Systemic Inflammatory Response Syndrome: Not Today. Pediatric Critical Care Medi-cine, 11, 763-764.
https://doi.org/10.1097/PCC.0b013e3181e89091
[36]  Payen, D., Mateo, J., Cavaillon, J.M., et al. (2009) Impact of Continuous Venovenous Hemofiltration on Organ Failure during the Early Phase of Severe Sepsis: A Randomized Con-trolled Trial. Critical Care Medicine, 37, 803-810.
https://doi.org/10.1097/CCM.0b013e3181962316

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133