全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

数字经济背景下生鲜农产品冷链绿色物流风险评估
Risk Assessment of Green Logistics in the Cold Chain of Fresh Agricultural Products under the Background of the Digital Economy

DOI: 10.12677/ORF.2023.134300, PP. 2990-3005

Keywords: 风险评估体系,支持向量机,改进的粒子群算法,生鲜农产品
Risk Assessment System
, Support Vector Machine, Improved Particle Swarm Optimization Algorithm, Fresh Agricultural Products

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着数字经济日渐融入农业,显著加速了农产品现代化进程。然而,整个生鲜农产品绿色物流过程,仍然存在风险识别问题,导致新鲜农产品的腐烂和损失,不仅产生的气体对生态环境有较大的破环,而且对食用腐烂农产品的人易患食源性疾病。本文对现有的物流风险因素研究进行分析总结,使用分解分析法划分绿色物流流程,结合事故致因相关理论,建立科学合理的风险评估体系和分级标准;增加压缩变量和反正切函数学习变量以及个体之间的交叉与自身的变异率,改进粒子群算法,克服由人为因素或客观数据差异带来的影响,建立IPSO-SVR模型;并对一家草莓物流运输公司数据进行风险评估,通过不同的模型对比,验证了本文模型的准确性和可靠性,为农产品绿色物流风险评估提供了科学依据。
With the digital economy increasingly integrating into agriculture, the modernization process of agricultural products has been significantly accelerated. However, the logistics risk identification problem still exists, which leads to the decay and loss of fresh agricultural products. The gas generated not only significantly damages the ecological environment but also is vulnerable to food-borne diseases for people who eat rotten agricultural products. This paper analyzes and summarizes the existing research on logistics risk factors, uses the decomposition analysis method to divide the logistics process, and establishes a scientific and reasonable risk assessment system and grading standards based on the theory of accident causes. It Increases the compression variables, arctangent function learning variables, and the crossover between individuals and their mutation rate, improves the particle swarm optimization algorithm, overcomes human factors or objective data differences, and establishes the impact of human factors or objective data differences in the IPSO-SVR model. The data of a strawberry logistics transportation company is evaluated for risk. By comparing different models, the accuracy and reliability of this model are verified, which provides a scientific basis for the risk assessment of green logistics of agricultural products.

References

[1]  温涛, 陈一明. 数字经济与农业农村经济融合发展: 实践模式、现实障碍与突破路径[J]. 农业经济问题, 2020(7): 118-129.
[2]  崔凯, 冯献. 数字乡村建设视角下乡村数字经济指标体系设计研究[J]. 农业现代化研究, 2020, 41(6): 899-909.
[3]  张鹏, 周恩毅. 农产品冷链物流供应链质量评价体系构建及实证[J]. 统计与决策, 2022, 38(11): 179-182.
[4]  Hartmann, C. and Siegrist, M. (2018) Development and Validation of the Food Disgust Scale. Food Quality and Preference, 63, 38-50.
https://doi.org/10.1016/j.foodqual.2017.07.013
[5]  黄星星, 胡坚堃, 黄有方. 碳税和碳限规则下生鲜农产品冷链配送路径优化[J]. 上海海事大学学报, 2018, 39(1): 74-79+110.
[6]  杨扬, 杨小佳, 喻庆芳. 基于系统动力学的生鲜农产品国际冷链物流运作风险控制研究——以云南省生鲜蔬菜国际冷链物流为例[J]. 北京交通大学学报(社会科学版), 2017, 16(3): 119-128.
[7]  付焯, 严余松, 郭茜, 邱忠权. 生鲜农产品供应链物流风险传递机理及控制[J]. 西南交通大学学报, 2018, 53(3): 654-660.
[8]  冯茜, 李擎, 全威, 裴轩墨. 多目标粒子群优化算法研究综述[J]. 工程科学学报, 2021, 43(6): 745-753.
[9]  汪海燕, 黎建辉, 杨风雷. 支持向量机理论及算法研究综述[J]. 计算机应用研究, 2014, 31(5): 1281-1286.
[10]  冀巨海, 张璇. 考虑取送作业的生鲜农产品配送路径优化模型与算法[J]. 系统科学学报, 2019, 27(1): 130-135.
[11]  Deng, X., Yang, X., Zhang, Y., Li, Y. and Lu, Z. (2019) Risk Propagation Mechanisms and Risk Management Strategies for a Sustainable Perishable Products Supply Chain. Computers & Industrial Engi-neering, 135, 1175-1187.
https://doi.org/10.1016/j.cie.2019.01.014
[12]  Prakash, S., Soni, G., Rathore, A.P.S. and Singh, S. (2017) Risk Analysis and Mitigation for Perishable Food Supply Chain: A Case of Dairy Industry. Benchmarking: An Interna-tional Journal, 24, 2-23.
https://doi.org/10.1108/BIJ-07-2015-0070
[13]  Nakandala, D., Lau, H. and Zhao, L. (2017) Development of a Hybrid Fresh Food Supply Chain Risk Assessment Model. International Journal of Production Research, 55, 4180-4195.
https://doi.org/10.1080/00207543.2016.1267413
[14]  周欢, 刘家国. 港口危化品物流风险管理的WSR模型研究[J]. 管理评论, 2021, 33(5): 142-151.
[15]  赵闯, 郎坤. 基于贝叶斯网络的生鲜物流风险评估[J]. 系统科学与数学, 2020, 40(11): 2108-2124.
[16]  张琰. 生鲜农产品冷链物流风险预警指标体系构建——基于成本约束的背景[J]. 商业经济研究, 2017(3): 132-133.
[17]  Liobikien?, G., Krik?tolaitis, R. and Miceikien?, A. (2023) The Main Determinants of Changes in Biomass Extraction: The Decomposition Analysis Approach. Envi-ronment, Development and Sustainability, 25, 7987-8003.
https://doi.org/10.1007/s10668-022-02383-7
[18]  Boulahdid, S., Alami, R., Bouazzaoui, S., et al. (2017) Importance de la démarche qualité dans la performance du processus de production des PSL. Transfusion Clinique et Biologique, 24, 336.
https://doi.org/10.1016/j.tracli.2017.06.170
[19]  Lu, X.-Y., Chen, L., Wu, C.-Y., Chan, H.-K. and Freeman, T. (2017) The Effects of Relative Humidity on the Flowability and Dispersion Performance of Lactose Mixtures. Materials, 10, Article No. 592.
https://doi.org/10.3390/ma10060592
[20]  Navrotskaya, A., Aleksandrova, D., Chekini, M., et al. (2022) Nanostructured Temperature Indicator for Cold Chain Logistics. ACS Nano, 16, 8641-8650.
https://doi.org/10.1021/acsnano.1c11421

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133