全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

细胞衰老标志物与衰老相关疾病的关系探讨
Exploring the Relationship between Cellular Senescence Markers and Aging-Related Diseases

DOI: 10.12677/ACM.2023.1381723, PP. 12298-12303

Keywords: 细胞衰老,健康衰老,标志物,老龄化,衰老相关疾病
Cellular Senescence
, Healthy Aging, Markers, Aging, Aging-Related Diseases

Full-Text   Cite this paper   Add to My Lib

Abstract:

公共卫生和医学的不断进步推动着人类预期寿命的增长,目前老龄化持续加剧已成为我国乃至世界社会发展中不可逆转的趋势,据国家统计局最新数据显示我国65岁及以上人口20,056万人,占全国人口的14.2%,我国已进入深度老龄化阶段。神经退行性疾病、心脑血管疾病、癌症等的发生发展均与机体衰老密切相关,实现健康老龄化延缓衰老相关疾病的发生显得至关重要。细胞衰老是机体衰老和死亡的基础,因此,我们探究细胞衰老潜在标志物细胞周期抑制蛋白表达、端粒损耗、DNA损伤、衰老相关-β-半乳糖苷酶(SA-β-Gal)、衰老相关分泌表型(SASP)、核纤层蛋白B1 (Lamin B1)、衰老相关异色病灶(SAHF)、自噬与衰老相关疾病的关系,为后续探索更有价值的标志物来预测、延缓衰老相关疾病进展,实现健康老龄化奠基。
The continuous progress of public health and medicine has promoted the growth of human life ex-pectancy, and aging has become an irreversible trend in the development of our country and even the world society. According to the latest data from the National Bureau of Statistics, China’s popu-lation of 65 years old and above is 2005.6 million people, which accounts for 14.2% of the national population, and our country has entered into the stage of deep aging. The development of neuro-degenerative diseases, cardiovascular and cerebrovascular diseases, cancer and others is closely related to the aging of the organism, to achieve healthy aging to slow down the occurrence of dis-eases related to aging seems to be crucial. Cellular senescence is the basis of aging and death, therefore, we explore the relationship between potential markers of cellular senescence, such as cell cycle inhibitory protein expression, telomere attrition, DNA damage, senescence-associated-β- galactosidase (SA-β-Gal), senescence-associated secretory phenotype (SASP), nuclear fibrillar lam-inin B1 (Lamin B1), senescence-associated heterochromatic foci (SAHF) and autophagy, and ag-ing-related diseases, to provide a basis for the subsequent exploration of the development of healthy aging and slowing down of the development of aging-related diseases, laying the foundation for subsequent exploration of more valuable markers to predict and delay the progression of ag-ing-related diseases and achieve healthy aging.

References

[1]  Evangelou, K., Vasileiou, P.V.S., et al. (2023) Cellular Senescence and Cardiovascular Diseases: Moving to the “heart” of the Problem. Physiological Reviews, 103, 609-647.
https://doi.org/10.1152/physrev.00007.2022
[2]  Miwa, S., Kashyap, S., Chini, E. and von Zglinicki, T. (2022) Mitochondrial Dysfunction in Cell Senescence and Aging. Journal of Clinical Investigation, 132, e158447.
https://doi.org/10.1172/JCI158447
[3]  Kowald, A., Passos, J.F. and Kirk-wood, T.B.L. (2020) On the Evolution of Cellular Senescence. Aging Cell, 19, e13270.
https://doi.org/10.1111/acel.13270
[4]  Hernandez-Segura, A., Nehme, J. and Demaria, M. (2018) Hallmarks of Cellular Senescence. Trends in Cell Biology, 28, 436-453.
https://doi.org/10.1016/j.tcb.2018.02.001
[5]  Roger, L., Tomas, F. and Gire, V. (2021) Mechanisms and Regulation of Cellular Senescence. International Journal of Molecular Sciences, 22, Article 13173.
https://doi.org/10.3390/ijms222313173
[6]  Otero-Albiol, D. and Carnero, A. (2021) Cellular Senescence or Stemness: Hypoxia Flips the Coin. Journal of Experimental & Clinical Cancer Research, 40, Ar-ticle No. 243.
https://doi.org/10.1186/s13046-021-02035-0
[7]  Gems, D. and Kern, C.C. (2022) Is “Cellular Se-nescence” a Misnomer? GeroScience, 44, 2461-2469.
https://doi.org/10.1007/s11357-022-00652-x
[8]  Ahmed, R., Reza, H.M., Shinohara, K. and Nakahata, Y. (2022) Cellular Senescence and Its Impact on the Circadian Clock. The Journal of Biochemistry, 171, 493-500.
https://doi.org/10.1093/jb/mvab115
[9]  Liu, Y., Johnson, S.M., Fedoriw, Y., Rogers, A.B., Yuan, H., Krishna-murthy, J. and Sharpless, N.E. (2011) Expression of p16INK4a Prevents Cancer and Promotes Aging in Lymphocytes. Blood, 117, 3257-3267.
https://doi.org/10.1182/blood-2010-09-304402
[10]  Liu, J.Y., Souroullas, G.P., Diekman, B.O., Krishnamurthy, J., Hall, B.M., Sorrentino, J.A., Parker, J.S., Sessions, G.A., Gudkov, A.V. and Sharpless, N.E. (2019) Cells Exhibiting Strong p16INK4a Promoter Activation in Vivo Display Features of Senescence. Proceedings of the National Academy of Sciences of the United States of America, 116, 2603-2611.
https://doi.org/10.1073/pnas.1818313116
[11]  Zhou, D., Borsa, M. and Simon, A.K. (2021) Hallmarks and Detec-tion Techniques of Cellular Senescence and Cellular Ageing in Immune Cells. Aging Cell, 20, e13316.
https://doi.org/10.1111/acel.13316
[12]  Li, Y., Deng, W., Wu, J., et al. (2023) TXNIP Exacerbates the Senescence and Aging-Related Dysfunction of β Cells by Inducing Cell Cycle Arrest through p38-p16/p21-CDK-Rb Pathway. Anti-oxidants & Redox Signaling, 38, 480-495.
https://doi.org/10.1089/ars.2021.0224
[13]  Al-Azab, M., Safi, M., Idiiatullina, E., Al-Shaebi, F. and Zaky, M.Y. (2022) Aging of Mesenchymal Stem Cell: Machinery, Markers, and Strategies of Fighting. Cellular & Molecular Biology Letters, 27, Article No. 69.
https://doi.org/10.1186/s11658-022-00366-0
[14]  Shi, D., Tan, Q., Ruan, J., Tian, Z., Wang, X., Liu, J., Liu, X., Liu, Z., Zhang, Y., Sun, C. and Niu, Y. (2021) Aging-Related Markers in Rat Urine Revealed by Dynamic Metabolic Profiling Using Machine Learning. Aging, 13, 14322-14341.
https://doi.org/10.18632/aging.203046
[15]  Sikora, E., Bielak-Zmijewska, A. and Mosieniak, G. (2021) A Com-mon Signature of Cellular Senescence; Does It Exist? Ageing Research Reviews, 71, Article ID: 101458.
https://doi.org/10.1016/j.arr.2021.101458
[16]  Khosla, S., Farr, J.N., Tchkonia, T. and Kirkland, J.L. (2020) The Role of Cellular Senescence in Ageing and Endocrine Disease. Nature Reviews Endocrinology, 16, 263-275.
https://doi.org/10.1038/s41574-020-0335-y
[17]  Yang, J.H., Hayano, M., Griffin, P.T., et al. (2023) Loss of Epi-genetic Information as a Cause of Mammalian Aging. Cell, 186, 305-326.E27.
[18]  Jeremic, D., Jiménez-Díaz, L. and Navarro-López, J.D. (2021) Past, Present and Future of Therapeutic Strategies against Amyloid-β Peptides in Alz-heimer’s Disease: A Systematic Review. Ageing Research Reviews, 72, Article ID: 101496.
https://doi.org/10.1016/j.arr.2021.101496
[19]  Zhang, H., Wei, W., Zhao, M., Ma, L., Jiang, X., Pei, H., Cao, Y. and Li, H. (2021) Interaction between Aβ and Tau in the Pathogenesis of Alzheimer’s Disease. International Journal of Biological Sciences, 17, 2181-2192.
https://doi.org/10.7150/ijbs.57078
[20]  Muralidar, S., Ambi, S.V., Sekaran, S., Thirumalai, D. and Palaniappan, B. (2020) Role of Tau Protein in Alzheimer’s Disease: The Prime Pathological Player. International Journal of Biological Macromolecules, 163, 1599-1617.
https://doi.org/10.1016/j.ijbiomac.2020.07.327
[21]  Sun, Y.Y., Wang, Z. and Huang, H.C. (2023) Roles of ApoE4 on the Pathogenesis in Alzheimer’s Disease and the Potential Therapeutic Approaches. Cellular and Molecular Neurobi-ology.
https://doi.org/10.1007/s10571-023-01365-1
[22]  Bj?rkegren, J.L.M. and Lusis, A.J. (2022) Atherosclero-sis: Recent Developments. Cell, 185, 1630-1645.
https://doi.org/10.1016/j.cell.2022.04.004
[23]  Grootaert, M.O.J., Moulis, M., Roth, L., Martinet, W., Vindis, C., Bennett, M.R. and De Meyer, G.R.Y. (2018) Vascular Smooth Muscle Cell Death, Autophagy and Senescence in Ath-erosclerosis. Cardiovascular Research, 114, 622-634.
https://doi.org/10.1093/cvr/cvy007
[24]  Zhang, Y., Weng, J., Huan, L., Sheng, S. and Xu, F. (2023) Mitophagy in Atherosclerosis: From Mechanism to Therapy. Frontiers in Immunology, 14, Article 1165507.
https://doi.org/10.3389/fimmu.2023.1165507
[25]  Bravo-San Pedro, J.M., Kroemer, G. and Galluzzi, L. (2017) Autophagy and Mitophagy in Cardiovascular Disease. Circulation Research, 120, 1812-1824.
https://doi.org/10.1161/CIRCRESAHA.117.311082
[26]  Guo, Y., Jia, X., Cui, Y., Song, Y., Wang, S., Geng, Y., Li, R., Gao, W. and Fu, D. (2021) Sirt3-Mediated Mitophagy Regulates AGEs-Induced BMSCs Senescence and Senile Osteoporosis. Redox Biology, 41, Article ID: 101915.
https://doi.org/10.1016/j.redox.2021.101915
[27]  Liu, F., Yuan, L., Li, L., Yang, J., Liu, J., Chen, Y., Zhang, J., Lu, Y., Yuan, Y. and Cheng, J. (2023) S-Sulfhydration of SIRT3 Combats BMSC Senescence and Ameliorates Osteo-porosis via Stabilizing Heterochromatic and Mitochondrial Homeostasis. Pharmacological Research, 192, Article ID: 106788.
https://doi.org/10.1016/j.phrs.2023.106788
[28]  Hu, S. and Wang, S. (2022) The Role of SIRT3 in the Osteoporosis. Frontiers in Endocrinology, 13, Article 893678.
https://doi.org/10.3389/fendo.2022.893678
[29]  F?ger-Samwald, U., Kerschan-Schindl, K., Butylina, M. and Pi-etschmann, P. (2022) Age Related Osteoporosis: Targeting Cellular Senescence. International Journal of Molecular Sci-ences, 23, Article 2701.
https://doi.org/10.3390/ijms23052701
[30]  Iwasaki, K., Abarca, C. and Aguayo-Mazzucato, C. (2023) Regulation of Cellular Senescence in Type 2 Diabetes Mellitus: From Mechanisms to Clinical Applications. Diabetes & Metabolism Journal, 47, 441-453.
https://doi.org/10.4093/dmj.2022.0416
[31]  Murakami, T., Inagaki, N. and Kondoh, H. (2022) Cellular Senescence in Diabetes Mellitus: Distinct Senotherapeutic Strategies for Adipose Tissue and Pancreatic β Cells. Frontiers in Endo-crinology, 13, Article 869414.
https://doi.org/10.3389/fendo.2022.869414
[32]  Narasimhan, A., Flores, R.R., Robbins, P.D. and Niedernhofer, L.J. (2021) Role of Cellular Senescence in Type II Diabetes. Endocrinology, 162, bqab136.
https://doi.org/10.1210/endocr/bqab136
[33]  Dludla, P.V., Mabhida, S.E., Ziqubu, K., Nkambule, B.B., Mazibu-ko-Mbeje, S.E., Hanser, S., Basson, A.K., Pheiffer, C. and Kengne, A.P. (2023) Pancreatic β-Cell Dysfunction in Type 2 Diabetes: Implications of Inflammation and Oxidative Stress. World Journal of Diabetes, 14, 130-146.
https://doi.org/10.4239/wjd.v14.i3.130
[34]  Cheng, F., Luk, A.O., Shi, M., Huang, C., et al. (2022) Shortened Leukocyte Telomere Length Is Associated with Glycemic Progression in Type 2 Diabetes: A Prospective and Mendelian Randomization Analysis. Diabetes Care, 45, 701-709.
https://doi.org/10.2337/dc21-1609
[35]  Shmulevich, R. and Krizhanovsky, V. (2021) Cell Senescence, DNA Damage, and Metabolism. Antioxidants & Redox Signaling, 34, 324-334.
https://doi.org/10.1089/ars.2020.8043
[36]  Peng, L., Baradar, A.A., Aguado, J. and Wolvetang, E. (2023) Cellular Senescence and Premature Aging in Down Syndrome. Mechanisms of Ageing and Development, 212, Article ID: 111824.
https://doi.org/10.1016/j.mad.2023.111824

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133