全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于YOLO的公共区域人群社交距离检测方法
A Social Distancing Detection Method for Public Area Crowds Based on YOLO

DOI: 10.12677/AIRR.2023.123023, PP. 199-208

Keywords: YOLO模型,社交距离,目标检测,风险评估
YOLO Model
, Social Distance, Object Detection, Risk Assessment

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对人流密集的公共区域,本论文提出了一种基于YOLO模型的人群社交距离检测方法,旨在进行有效的人流控制和预防疫情传播。该方法首先利用YOLO模型对公共区域的视频进行行人检测,获取每个行人的位置关键点信息。接着,通过KD-tree算法检测每个行人的邻居行人,并估计它们之间的距离。根据预设的安全距离阈值,对行人的社交距离进行风险评估,包括危险、安全或需要注意的状态。为了更好地呈现结果,本文将危险状态标识为红色危险标识,安全状态标识为绿色安全标识,而中间状态则标识为紫色注意标识。实验结果表明,所提出的行人社交距离检测方法具有较高的实时性和准确性。
This paper presents a crowd social distancing detection method based on the YOLO model, aiming to effectively control crowd movement and prevent the transmission of infectious diseases in densely populated public areas. The proposed method leverages the YOLO model to perform pedestrian detection on videos captured in public areas, thereby extracting precise positional key point information for each individual. Subsequently, the KD-tree algorithm is employed to identify neighboring pedestrians for each detected individual and estimate the inter-person distances between them. By utilizing a predefined threshold for a safe distance, a risk assessment is conducted to categorize the social distancing status of pedestrians into dangerous, safe, or attention-required states. To enhance the interpretability of the results, this study employs a red danger symbol to represent the dangerous state, a green safety symbol to represent the safe state, and a purple attention symbol to represent the intermediate state. Experimental results demonstrate that the proposed crowd social distancing detection method achieves high real-time performance and accuracy in assessing and monitoring social distancing compliance among pedestrians.

References

[1]  王林, 张江涛. 基于轻量化神经网络的社交距离检测[J]. 计算机系统应用, 2023, 32(2): 128-138.
[2]  王鑫鹏, 王晓强, 林浩, 李雷孝, 杨艳艳, 孟闯, 高静. 深度学习典型目标检测算法的改进综述[J]. 计算机工程与应用, 2022, 58(6): 42-57.
[3]  许德刚, 王露, 李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8): 10-25.
[4]  王婧媛, 方健. 基于Yolov5的密集场所人数估计方法[J]. 吉林大学学报(信息科学版), 2021, 39(6): 682-687.
[5]  谈世磊, 别雄波, 卢功林, 谈小虎. 基于YOLOv5网络模型的人员口罩佩戴实时检测[J]. 激光杂志, 2021, 42(2): 147-150.
[6]  戴金波. 基于视觉信息的图像特征提取算法研究[D]: [博士学位论文]. 吉林: 吉林大学, 2013.
[7]  Tao, S., Liao, H.Y. and Ganesh, S. (2022) Efficient Local Refinement near Parametric Boundaries Using kd-Tree Data Structure and Algebraic Level Sets. Algorithms, 15, Article 245.
https://doi.org/10.3390/a15070245
[8]  张闯, 王婷婷, 孙冬娇, 葛益娴, 常建华. 基于欧氏距离图的图像边缘检测[J]. 中国图象图形学报, 2013, 18(2): 176-183.
[9]  Hao, Q., Xin, G. and F, Y. (2023) Fast Recognition Method for Multiple Apple Targets in Complex Occlusion Environment Based on Improved YOLOv5. Journal of Sensors, 2023, Article ID: 3609541.
https://doi.org/10.1155/2023/3609541
[10]  Ranjai, B. and Heon, J. (2022) YOLOv5 with ConvMixer Prediction Heads for Precise Object Detection in Drone Imagery. Sensors, 22, Article 8424.
https://doi.org/10.3390/s22218424

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133