全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于目标识别与定位技术的机械手研究
Research on Robotic Arms Based on Target Recognition and Positioning Technology

DOI: 10.12677/AIRR.2023.123021, PP. 181-188

Keywords: Yolov5,目标识别,单目结构光,定位
Yolov5
, Target Recognition, Monocular Structured Light, Positioning

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对生活场景中使用机械手进行物体抓取的操作,本文提出了基于Yolov5算法的多目标检测系统,此算法相较于低版本的Yolo算法及R-CNN算法具有计算量小、准确率高的特点。市面中多采用单目相机赋予机械手二维视觉模块,本文在单目相机的基础上,相较于双目相机在获取三维数据时成本高、受环境影响时特征点无法进行匹配易产生误差的问题,结合结构光模块,生成单目结构光系统,更好地赋予机械手获取物体的深度信息的能力,最终得到物体的世界坐标值。通过实验现象表明,获得的平均精度均值为96.5%,定位精度相较于双目系统更为精准,最终能够较好地满足机械手完成对于物体在三维空间中定位与抓取的需要。
This article proposes a multi-objective detection system based on the Yolov5 algorithm for object grasping using robotic arms in real-life scenarios. Compared to earlier versions of the Yolo algorithm and R-CNN algorithm, this algorithm has the characteristics of low computational complexity and high accuracy. Monocular cameras are often used in the market to endow the manipulator with a two-dimensional vision module. This paper, based on the monocular camera, compared with the binocular camera, which has a high cost in acquiring three-dimensional data, and the problem that the feature points cannot be matched when affected by the environment, is prone to errors. Combined with the structured light module, a monocular structured light system is generated to better endow the manipulator with the ability to obtain the depth information of the object, and finally obtain the world coordinate value of the object. Through experimental phenomena, it has been shown that the average accuracy obtained is 96.5%, and the positioning accuracy is more accurate than that of the binocular system. Ultimately, it can better meet the needs of the robotic arm for positioning and grasping objects in three-dimensional space.

References

[1]  杨旭海, 周文皓, 李育峰, 等. 采摘机械臂路径规划算法研究现状综述[J]. 中国农机化学报, 2023, 44(5): 161-169.
[2]  黄贤振, 彭淑萍, 等. 基于双目视觉的目标识别与定位及机械臂的抓取研究[J]. 自动化与仪表, 2022, 37(9): 32-35.
[3]  Wang, X.B., Zhu, X.Y. and Yao, M.H. (2021) Target Detection Method Based on Improved Faster RCNN. Chinese High Technology Letters, 31, 489-499.
[4]  Joseph, R., Santosh, D., Ross, G., et al. (2016) You Only Look Once: Unified, Real-Time Object Detection. Proceeding of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, June 2016, 779-788.
[5]  Ren, S.Q., He, K.M., Ross, G., et al. (2017) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149.
https://doi.org/10.1109/TPAMI.2016.2577031
[6]  林向会. 基于视频分析的铁路异物侵限检测系统的设计[D]: [硕士学位论文]. 贵州: 贵州大学, 2021.
[7]  Sun, Q., Liang, L., Dang, X.H. and Chen, Y. (2022) Deep Learning-Based Dimensional Emotion Recognition Combining the Attention Mechanism and Global Second-Order Feature Representations. Computers and Electrical Engineering, 104, Article 108469.
https://doi.org/10.1016/j.compeleceng.2022.108469
[8]  肖志强, 周书民, 汪志成, 等. 结合目标检测与定位的物料抓取研究[J]. 电子技术与软件工程, 2022(5): 160-163.
[9]  李扬铭. 基于结构光的三维测量技术[D]: [硕士学位论文]. 吉林: 长春理工大学, 2022.
[10]  杨柳. 单目结构光三维测量精度优化技术研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2017.
[11]  刘敬华. 基于双目视觉的运动工件识别与机器人抓取系统研究[D]: [硕士学位论文]. 山东: 山东科技大学, 2019.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133