全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Invasive Common Reed (Phragmites australis (Cav.) Trin. ex Steud.): A Serious Ecological Threat to Ladakh Tethys Himalayan Biodiversity in Changing Climate

DOI: 10.4236/ajcc.2023.123015, PP. 321-334

Keywords: Phragmites, Ecology, Biodiversity, Fodder, Ladakh

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ladakh’s cropped and non-cropped areas suffer greatly from weedy invasion under subsistence agricultural system where weeding is not a priority but total crop + weed biomass together contribute to livestock feeding significantly. As agriculture along with livestock rearing is major activity of livelihood options, thereby contributing significantly to Ladakh economy and income generation for supporting resource poor farmers. Amongst various invasive weed species, the common reed (Phragmites australis) has become a serious ecological threat for agri-silvi-pastoral system biodiversity and accelerated its expansion in cropped lands including many wetland and salt-affected habitats of cold arid region due to its intermediate plant growth habit of C3 - C4 photosynthetic ecotypes. This character makes Phragmites a climate-resilient species, which is a major challenge for cold arid agriculture in the changing climatic patterns. Simultaneously, it is one of the best fodder substitute available under harsh climate. This paper deals with its unique characters and potential threats to the agrobiodiversity of Ladakh.

References

[1]  Acharya, S., Katiyar, A. K., Bharti, V. K., Charan, G., Prakash, B., & Shrivastava, R. B. (2012). Assessment of Irrigation Water Quality of Cold Arid Ladakh Region. Journal of Soil and Water Conservation, 11, 311-315.
[2]  Ali, N. A., Bernal, M. P., & Ater, M. (2002). Tolerance and Bioaccumulation of Copper in Phragmites australis and Zea mays. Plant and Soil, 239, 103-111.
https://doi.org/10.1023/A:1014995321560
[3]  Bel, R. G. (2007). Allelopathy in Crop/Weed Interactions—An Update. Pest Management Science, 63, 308-326.
https://doi.org/10.1002/ps.1320
[4]  Best, E. P. H., Zippin, M., & Dassen, J. H. A. (1981). Growth and Production of Phragmites australis in Lake Vechten (The Netherlands). Hydrobiological Bulletin, 15, 165-174.
https://doi.org/10.1007/BF02255175
[5]  Bhattacharyya, A. (1991). Ethnobotanical Observations in the Ladakh Region of Northern Jammu and Kashmir State, India. Economic Botany, 45, 305-308.
https://doi.org/10.1007/BF02887067
[6]  Bonham, A. J. (1983). The Management of Wave-Spending Vegetation as Bank Protection against Boat Wash. Landscape Planning, 10, 15-30.
https://doi.org/10.1016/0304-3924(83)90025-4
[7]  Bor, N. L. (1960). The Grasses of Burma, Ceylon, India and Pakistan. Pergamon Press.
https://doi.org/10.1097/00010694-196111000-00009
[8]  Borin, M., Milani, M., Salvato, M., & Toscano (2011). A Evaluation of Phragmites australis (Cav.) Trin. Evapotranspiration in Northern and Southern Italy. Ecological Engineering, 37, 721-728.
https://doi.org/10.1016/j.ecoleng.2010.05.003
[9]  Chiu, K. K., Ye, Z. H., & Wong, M. H. (2006). Growth of Vetiveria zizanioides and Phragmites australis on Pb/Zn and Cu Mine Tailings Amended with Manure Compost and Sewage Sludge: A Greenhouse Study. Bioresource Technology, 97, 158-170.
https://doi.org/10.1016/j.biortech.2005.01.038
[10]  Dar, P. A., Reshi, Z. A., & Shah, A. B. (2018). Altitudinal Distribution of Native and Alien Plant Species along Roadsides in Kashmir Himalaya, India. Tropical Ecology, 59, 45-55.
[11]  Dely-Draskovits, A., Vasarhely, T., & Bachli, G. (1992). The Importance of Reed Beds from the Entomological Point of View. Mitteilungen der Entomologischen Gesellschaft Basel, 42, 46-52.
[12]  Dinka, M., & Szeglet, P. (1998). Reed (Phragmites australis (Cav.) Trin. ex. Steudel) Growth and Production in Different Habitats of Neusiedlresee (Lake Fert) Verh. Internationale Vereinigungfur Theoretische und Angewandte Limnologie, 26, 1830-1834.
https://doi.org/10.1080/03680770.1995.11901055
[13]  Drzewiecka, K., Borowiak, K., Mieczek, M., Zawada, I., & Golinski, P. (2010). Cadmium and Lead Accumulation in Two Plants of Five Lakes in Poznan, Poland. Acta Biologica Cracoviensia, 52, 59-68.
https://doi.org/10.2478/v10182-010-0024-6
[14]  Fell, P. E., Weissbach, S. P., Jones, D. A., Fallon, M. A., Zeppieri, J. A., Faison, E. K., Lennon, K. A., Newberry, K. J., & Reddington, L. K. (1998). Does Invasion of Oligohaline Tidal Marshes by Reed Grass, Phragmites australis (Cav.) Trin. Ex Steud., Affect the Availability of Prey Resources for the Mummichog, Fundulus heteroclitus L.? Journal of Experimental Marine Biology and Ecology, 222, 50-77.
https://doi.org/10.1016/S0022-0981(97)00138-X
[15]  Fox, J. L., Nurbu, C., Bhatt, S., & Chandola, A. (1994). Wildlife Conservation and Land-Use Changes in the Trans-Himalayan Region of Ladakh, India. Mountain Research and Development, 14, 39-60.
https://doi.org/10.2307/3673737
[16]  Hara, T., van-der-Troon, J., & Mook, J. H. (1993). Growth Dynamics and Size Structure of Shoot of Phragmites australis, a Clonal Plant. Journal of Ecology, 81, 47-60.
https://doi.org/10.2307/2261223
[17]  Haslam, S. M. (1972). Biological Flora of the British Isles No. 128: Phragmites communis Trin. Journal of Ecology, 60, 585-610.
https://doi.org/10.2307/2258363
[18]  Haslam, S. M. (1969). The Development and Emergence of Buds in Phragmites communis Trin. Annals of Botany, 33, 127-131.
https://doi.org/10.1093/oxfordjournals.aob.a084260
[19]  Hauber, D. P., White, D. A., Powers, S. P., & De Francesch, F. R. (1991). Isozyme Variation and Correspondence with Unusual Infrared Reflectance Patterns in Phragmites australis (Poaceae). Plant Systematics and Evolution, 178, 1-8.
https://doi.org/10.1007/BF00937978
[20]  Holm, L. G., Pancho, J. V., Herberger, J. P., & Plucknett, D. L. (1991). A Geographic Atlas of World Weeds. Krieger Publishing Company.
[21]  Kandwal, M. K., Uniyal, B. P., & Rajeshwari, S. (2010). A New Species of Phragmites (Gramineae) from Ladakh, India. The Journal of Japanese Botany, 85, 153-156.
[22]  Karthikeyan, S., Jain, S. K., Nayer, M. P., & Sanjappa, M. (1989). Florae Indicae Enumeratio: Monocotyledonae. BSI, Calcutta.
[23]  Klanderud, K., & Birks, H. J. B. (2003). Recent Increases in Species Richness and Shifts in Altitudinal Distributions of Norwegian Mountain Plants. The Holocene, 13, 1-6.
https://doi.org/10.1191/0959683603hl589ft
[24]  Klimes, L., & Dickoré, W. B. (2005). A Contribution to the Vascular Plant Flora of Lower Ladakh (Jammu & Kashmir, India). Willdenowia, 35, 125-153.
https://doi.org/10.3372/wi.35.35110
[25]  Lenoir, J., Gégout, J. C., Marquet, P. A., de Ruffray, P., & Brisse, H. (2008). A Significant Upward Shift in Plant Species Optimum Elevation during the 20th Century. Science, 320, 1768-1771.
https://doi.org/10.1126/science.1156831
[26]  Lessmann, J. M., Brix, H., Bauer, V., Clevering, O. A., & Comin, F. A. (2001). Effect of Climatic Gradients on the Photosynthetic Responses of Four Phragmites australis Populations. Aquatic Botany, 69, 109-126.
https://doi.org/10.1016/S0304-3770(01)00133-4
[27]  Mal, T. K., & Narine, L. (2004). The Biology of Canadian Weeds. 129. Phragmites australis (Cav.) Trin. exSteud. Canadian Journal of Plant Science, 84, 365-396.
https://doi.org/10.4141/P01-172
[28]  Mant, C., Costa, S., Williams, J., & Tambourgi, E. (2006). Phytoremediation of Chromium by Model Constructed Wetland. Bioresource Technology, 97, 1767-1772.
https://doi.org/10.1016/j.biortech.2005.09.010
[29]  Marks, M., Lapin, B., & Randall, J. (1994). Phragmites australis (P. communis) Threat, Management and Monitoring. Natural Areas Journal, 14, 285-294.
[30]  Nataraj, N., Hussain, M., Ibrahim, M., Hausmann, A. E., Rao, S., Kaur, S., Khazir, J., Mir, B. A., & Olsson, S. B. (2022). Effect of Altitude on Volatile Organic and Phenolic Compounds of Artemisia brevifolia Wall ex Dc. From the Western Himalayas. Frontiers in Ecology and Evolution, 10, Article ID: 864728.
https://doi.org/10.3389/fevo.2022.864728
[31]  Niering, W. A., & Warren, R. S. (1977). Our Dynamic Tidal Marshes: Vegetation Changes as Revealed by Peat Analysis. Connecticut Arboretum Bulletin 12. Connecticut College Arboretum, New London, Connecticut. Nir, A. 1976. Control of Perennial Weeds in Drainage Ditches. Phytoparasitica, 4, 157.
[32]  Peltier, E. E., Webb, S. M., & Gaillard, J. (2003). Zinc and Lead Sequestration in an Impacted Wetland System. Advances in Environmental Research, 8, 103-112.
https://doi.org/10.1016/S1093-0191(02)00143-0
[33]  Rahman Abdul, A. A., & Habib, S. A. (1989). Allelopathic Effect of Alfalfa (Medicago sativa) on Bladygrass (Imperata cylindrica). Journal of Chemical Ecology, 15, 2289-2300.
https://doi.org/10.1007/BF01012082
[34]  Rudrappa, T., Bonsall, J., Gallagher, J. L., Seliskar, D. M., & Bais, H. P. (2007). Root-Secreted Allelochemical in the Noxious Weed Phragmites australis Deploys a Reactive Oxygen Species Response and Microtubule Assembly Disruption to Execute Rhizotoxicity. Journal of Chemical Ecology, 33, 1898-1918.
https://doi.org/10.1007/s10886-007-9353-7
[35]  Samecka-Cymerman, A., & Kempers, A. J. (2001). Concentrations of Heavy Metals and Plant Nutrients in Water, Sediments and Aquatic Macrophytes of Anthropogenic Lakes (Former Open Cut Brown Coal Mines) Differing in Stage of Acidification. Science of the Total Environment, 281, 87-98.
https://doi.org/10.1016/S0048-9697(01)00838-5
[36]  Schierup, H. H., & Larsen, V. J. (1981). Macrophyte Cycling of Zinc, Copper, Lead and Cadmium in the Littoral Zone of a Polluted and a Non-Polluted Lake. I. Availability, Uptake and Translocation of Heavy Metals in Phragmites australis (Cav.) Trin. Aquatic Botany, 11, 197-210.
https://doi.org/10.1016/0304-3770(81)90061-9
[37]  Sehgal, J. L. (1973). Studies on Some Soils of NW Himalayas and Highlands of India. Geoderma, 9, 59-74.
https://doi.org/10.1016/0016-7061(73)90040-2
[38]  Shah, S. (2012). Can Ladakh the Cold Desert Become India’s Solar Desterec—Massive Benefits. Green World Investor.
[39]  Singh, N., & Srivastava, J. K. (2007). Comparison of the Ability of Two Grasses Viz., Phragmites karka (Retz.) Trin. Ex. Steud and Vetiveria zizanioides (L.) Nash to Improve Surface Water Quality in a Constructed Wetland. International Journal of Water, 3, 266-274.
https://doi.org/10.1504/IJW.2007.015219
[40]  Singh, A. (2021). The Toxic Love for Ladakh Is Weighing Heavy on Its Natural Resources. Mongabay Series: India’s Iconic Landscapes 20 July 2021.
[41]  Srivastava, J., Kalra, S. J. S., Chandra, H., & Nautiyal, A. R. (2012). Response of C3 and C4 Plant Systems Exposed to Heavy Metals for Phytoextraction at Elevated Atmospheric CO2 and at Elevated Temperature. In K. Jatin, & J. Srivastava (Eds.), Environmental Contamination (pp. 3-16). IntechOpen Publisher, Croatia.
https://doi.org/10.5772/31333
[42]  Srivastava, J., Kalra, S. J. S., & Naraian, R. (2014). Environmental Perspectives of Phragmites australis (Cav.) Trin. Ex. Steudel. Applied Water Science, 4, 193-202.
https://doi.org/10.1007/s13201-013-0142-x
[43]  Szymanowska, A., Samecka-Cymerman, A., & Kempers, A. J. (1999). Heavy Metals in Three Lakes in West Poland. Ecotoxicology and Environmental Safety, 43, 21-29.
https://doi.org/10.1006/eesa.1998.1747
[44]  Tucker, C. C. (1990). The Genera of Arundinoideae (Gramineae) in the Southeastern United States. Journal of the Arnold Arboretum, 71, 145-177.
https://doi.org/10.5962/bhl.part.24930
[45]  Uddin, M. N., Caridi, D., & Robinson, R. W. (2012). Phytotoxic Evaluation of Phragmites australis: An Investigation of Aqueous Extracts of Different Organs. Marine and Freshwater Research, 63, 777-787.
https://doi.org/10.1071/MF12071
[46]  Windham, L., Weis, J. S., & Weis, P. (2001). Patterns and Processes of Mercury Release from Leaves of Two Dominant Salt Marsh Macrophytes Phragmites australis and Spartina alterniflora. Estuaries, 24, 787-795.
https://doi.org/10.2307/1353170
[47]  Ye, Z. H., Baker, A. J. M., Wong, M. H., & Willis, A. J. (2003). Copper Tolerance, Uptake and Accumulation by Phragmites australis. Chemosphere, 50, 795-800.
https://doi.org/10.1016/S0045-6535(02)00221-7
[48]  Zheng, W. J., Zheng, X. P., & Zhang, C. L. (2000). A Survey of Photosynthetic Carbon Metabolism in 4 Ecotypes of Phragmites australis in Northwest China: Leaf Anatomy, Ultra-Structure, and Activities of Ribulose 1,5-Biphosphate Carboxylase, Phosphoenolpyruvate Carboxylase and Glycolate Oxidase. Physiologia Plantarum, 110, 201-208.
https://doi.org/10.1034/j.1399-3054.2000.110209.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133