|
南大洋长时间序列海冰密集度遥感数据产品比较评估
|
Abstract:
目前在气候研究中使用的时间序列连续且长度最长的被动微波遥感海冰密集度数据产品主要有美国雪冰数据中心(NSIDC)发布的NASA Team算法数据产品(NSIDC NASA Team数据产品)和Bootstrap算法数据产品(NSIDC Bootstrap数据产品),以及欧洲气象卫星应用组织(EUMETSAT)海洋海冰卫星应用中心(OSI SAF)发布的气候数据记录产品(OSI SAF数据产品),这三套长时间序列海冰密集度数据产品都是基于SMMR、SSM/I、SSMIS被动微波传感器,但源数据、反演算法和质量订正方法等方面的差异,可能引起数据产品之间的精度差异。为选取和应用数据产品开展南大洋海冰有关气候问题的研究,本文对上述三套数据产品在南大洋地区进行较长时间的比较评估。以基于AMSR-E、AMSR2被动微波传感器的ASI算法数据产品作为参照数据,分类分析按照“最近距离”原则匹配的格点上的海冰密集度。结果显示,长时间序列数据产品相对参照数据产品表现为漏估和空估的格点主要出现在海冰边缘区,海冰融化期漏估和空估的比例高于海冰冻结期。长时间序列数据产品整体上低估了海冰密集度。NSIDC Bootstrap数据产品相对参照数据产品漏估和空估的总比例低于另外两套评估数据产品,平均偏差的数值和均方根偏差小于另外两套评估数据产品。整体上,NSIDC Bootstrap数据产品与参照数据产品更为接近。
At present, the most consistent and longest satellite passive microwave (PM) sea ice concentration (SIC) products for climate studies include the NASA Team algorithm product and the Bootstrap algorithm product distributed by the National Snow and Ice Data Center (NSIDC), as well as the Climate Data Record (CDR) product developed at the EUMETSAT’s Ocean and Sea Ice Satellite Application Facility (OSI SAF). The three long-term PM SIC products are all derived from measured brightness temperatures from the Scanning Multichannel Microwave Radiometer (SMMR), the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS), while the precision of the three products may be inconsistent due to the differences in input data, algorithms and quality control methods. In order to select and apply long-term PM SIC products for climate studies related to the sea ice in the Southern Ocean, this paper conducted a comparative assessment of the three PM SIC products on a relatively long time series length in the Southern Ocean. For this purpose, the PM SIC product based on the Advanced Microwave Scanning Radiome-ter for the Earth Observing System (AMSR-E) and the Advanced Microwave Scanning Radiometer 2 (AMSR2) with the ARTIST Sea Ice (ASI) algorithm was used as reference data, and the cell-by-cell comparisons were performed on three categories of co-located data pairs using the near-est-neighbour scheme, including nonsingular sea ice samples, singular open water samples (omis-sive estimation samples) and singular sea ice samples (redundant estimation samples). The results show that omissive estimation samples and redundant estimation samples mainly appear in the marginal ice zone, and the proportion of omissive estimation samples and redundant estimation samples during the melting period is higher than that during the freezing period. For nonsingular sea ice samples, the
[1] | Matear, R.J., O’Kane, T.J., Risbey, J.S. and Chamberlain, M. (2015) Sources of Heterogeneous Variability and Trends in Antarctic Sea-Ice. Nature Communications, 6, Article No. 8656. https://doi.org/10.1038/ncomms9656 |
[2] | 沈春, 施伟来, 陈奕德, 刘科峰. 近30年南极海冰时空变化特征分析[C]//中国灾害防御协会风险分析专业委员会. 第二届中国沿海地区灾害风险分析与管理学术研讨会论文集. 巴黎: Atlantis Press, 2014: 114-119. |
[3] | 康建成, 唐述林, 刘雷保. 南极海冰与气候[J]. 地球科学进展, 2005(7): 786-793. |
[4] | 窦挺峰. 南极海冰对南半球大气环流和气候影响的数值模拟与诊断[D]: [硕士学位论文]. 北京: 中国气象科学研究院, 2009. |
[5] | 邵珠德. 南极春夏季海冰变化及其与气候要素的关系研究[D]: [硕士学位论文]. 南京: 南京大学, 2016. |
[6] | Shokr, M. and Sinha, N. (2015) Sea Ice: Physics and Remote Sensing. American Geophysical Union, Washington DC.
https://doi.org/10.1002/9781119028000 |
[7] | 刘艳霞. 南北极海冰密集度估算与海冰范围变化时序研究[D]: [博士学位论文]. 武汉: 武汉大学, 2016. |
[8] | Parkinson, C.L., Comiso, J.C. and Zwally, H.J. (2004) Nimbus-5 ESMR Polar Gridded Sea Ice Concentrations, Version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder. |
[9] | Comiso, J.C. and Zwally, H.J. (1982) Antarctic Sea Ice Concentrations Inferred from Nimbus 5 ESMR and Landsat Imagery. Journal of Geophysical Research Oceans, 87, 5836-5844. https://doi.org/10.1029/JC087iC08p05836 |
[10] | Bj?rgo, E., Johannessen, O.M. and Miles, M.W. (1997) Analysis of Merged SMMR-SSMI Time Series of Arctic and Antarctic Sea Ice Parameters 1978-1995. Geophysical Research Letters, 24, 413-416.
https://doi.org/10.1029/96GL04021 |
[11] | Comiso, J.C. and Nishio, F. (2008) Trends in the Sea Ice Cover Using Enhanced and Compatible AMSR-E, SSM/I, and SMMR Data. Journal of Geophysical Research, 113, C02S07. https://doi.org/10.1029/2007JC004257 |
[12] | Cavalieri, D.J., Parkinson, C.L., Gloersen, P. and Zwally, H.J. (1996) Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder. |
[13] | Comiso, J.C. (2017) Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 3. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder. |
[14] | EUMETSAT Ocean and Sea Ice Satellite Application Facility (2017) Global Sea Ice Concentration Climate Data Record 1979-2015 v2.0, OSI-450. |
[15] | EUMETSAT Ocean and Sea Ice Satellite Application Facility (2017) Global Sea Ice Concentration Interim Climate Data Record 2016-Onwards v2.0, OSI-430-b. |
[16] | Lavergne, T., S?rensen, A.M., Kern, S., Tonboe, R., Notz, D., Aaboe, S., Bell, L., Dybkj?r, G., East-wood, S., Gabarro, C., Heygster, G., Killie, M.A., Brandt Kreiner, M., Lavelle, J., Saldo, R., Sandven, S. and Pedersen, L.T. (2019) Version 2 of the EUMETSAT OSI SAF and ESA CCI Sea-Ice Concentration Climate Data Records. The Cryosphere, 13, 49-78. https://doi.org/10.5194/tc-13-49-2019 |
[17] | Comiso, J.C., Cavalieri, D.J., Parkinson, C.L. and Gloersen, P. (1997) Passive Microwave Algorithms for Sea Ice Concentration: A Comparison of Two Techniques. Remote Sensing of Environment, 60, 357-384.
https://doi.org/10.1016/S0034-4257(96)00220-9 |
[18] | Ivanova, N., Johannessen, O.M., Pedersen, L.T. and Tonboe, R.T. (2014) Retrieval of Arctic Sea Ice Parameters by Satellite Passive Microwave Sensors: A Comparison of Eleven Sea Ice Concentration Algorithms. IEEE Transactions on Geoscience and Remote Sensing, 52, 7233-7246. https://doi.org/10.1109/TGRS.2014.2310136 |
[19] | Ivanova, N., Pedersen, L.T., Tonboe, R.T., Kern, S., Heygster, G., Lavergne, T., S?rensen, A., Saldo, R., Dybkj?r, G., Brucker, L. and Shokr, M. (2015) Inter-Comparison and Evalu-ation of Sea Ice Algorithms: Towards Further Identification of Challenges and Optimal Approach Using Passive Micro-wave Observations. The Cryosphere, 9, 1797-1817.
https://doi.org/10.5194/tc-9-1797-2015 |
[20] | Kern, S., Lavergne, T., Notz, D., Pedersen, L.T., Tonboe, R.T., Saldo, R. and S?rensen, A.M. (2019) Satellite Passive Microwave Sea-Ice Concentration Data Set Intercomparison: Closed Ice and Ship-Based Observations. The Cryosphere, 13, 3261-3307. https://doi.org/10.5194/tc-13-3261-2019 |
[21] | Kern, S., Lavergne, T., Pedersen, L.T., Tonboe, R.T., Bell, L., Meyer, M. and Zeigermann, L. (2022) Satellite Passive Micro-wave Sea-Ice Concentration Data Set Intercomparison Using Landsat Data. The Cryosphere, 16, 349-378.
https://doi.org/10.5194/tc-16-349-2022 |
[22] | Spreen, G., Kaleschke, L. and Heygster, G. (2008) Sea Ice Remote Sensing Using AMSR-E 89-GHz Channels. Journal of Geophysical Research, 113, C02S03. https://doi.org/10.1029/2005JC003384 |
[23] | Melsheimer, C. and Spreen, G. (2020) AMSR-E ASI Sea Ice Concen-tration Data, Antarctic, Version 5.4 (NetCDF) (June 2002-September 2011). PANGAEA. |
[24] | Melsheimer, C. and Spreen, G. (2019) AMSR2 ASI Sea Ice Concentration Data, Antarctic, Version 5.4 (NetCDF) (July 2012-December 2019). PANGAEA. |
[25] | Meier, W.N., Fetterer, F., Stewart, J.S. and Helfrich, S. (2017) How Do Sea-Ice Concentra-tions from Operational Data Compare with Passive Microwave Estimates? Implications for Improved Model Evaluations and Forecasting. Annals of Glaciology, 56, 332-340. https://doi.org/10.3189/2015AoG69A694 |
[26] | Wiebe, H., Heygster, G. and Markus, T. (2009) Comparison of the ASI Ice Concentration Algorithm with Landsat-7 ETM+ and SAR Imagery. IEEE Transactions on Geoscience & Remote Sensing, 47, 3008-3015.
https://doi.org/10.1109/TGRS.2009.2026367 |
[27] | Pang, X., Pu, J., Zhao, X., Ji, Q., Qu, M. and Cheng, Z. (2018) Comparison between AMSR2 Sea Ice Concentration Products and Pseudo-Ship Observations of the Arctic and Antarctic Sea Ice Edge on Cloud-Free Days. Remote Sensing, 10, Article No. 317. https://doi.org/10.3390/rs10020317 |
[28] | Wang, Q., Lu, P., Zu, Y., Li, Z., Lepp?ranta, M. and Zhang, G. (2019) Comparison of Passive Microwave Data with Shipborne Photographic Observations of Summer Sea Ice Concentration along an Arctic Cruise Path. Remote Sensing, 11, Article No. 2009. https://doi.org/10.3390/rs11172009 |
[29] | Beitsch, A., Kern, S. and Kaleschke, L. (2015) Comparison of SSM/I and AMSR-E Sea Ice Concentrations with ASPeCt Ship Observations around Antarctica. IEEE Transactions on Geoscience and Remote Sensing, 53, 1985-1996.
https://doi.org/10.1109/TGRS.2014.2351497 |
[30] | Alekseeva, T., Tikhonov, V., Frolov, S., Repina, I., Raev, M., Sokolova, J., Sharkov, E., Afanasieva, E. and Serovetnikov, S. (2019) Comparison of Arctic Sea Ice Concentrations from the NASA Team, ASI, and VASIA2 Algorithms with Summer and Winter Ship Data. Remote Sensing, 11, Article No. 2481. https://doi.org/10.3390/rs11212481 |
[31] | Meier, W.N. (2005) Comparison of Passive Microwave Ice Concentration Algorithm Retrievals with AVHRR Imagery in Arctic Peripheral Seas. IEEE Transactions on Geoscience and Remote Sensing, 43, 1324-1337.
https://doi.org/10.1109/TGRS.2005.846151 |
[32] | 郝光华, 赵杰臣, 李春花, 杨清华, 王江鹏, 孙晓宇, 张林. 2017年夏季北极中央航道海冰观测特征及海冰密集度遥感产品评估[J]. 海洋学报, 2018, 40(11): 54-63. |
[33] | Kern, S., Lavergne, T., Notz, D., Pedersen, L.T. and Tonboe, R. (2020) Satellite Passive Microwave Sea-Ice Concentration Data Set Inter-Comparison for Arctic Summer Conditions. The Cryosphere, 14, 2469-2493.
https://doi.org/10.5194/tc-14-2469-2020 |