|
苯丙酮尿症的研究进展
|
Abstract:
苯丙酮尿症(PKU)又称高苯丙氨酸血症,是常见的单基因遗传病,是一种由功能性苯丙氨酸羟化酶(PAH)缺乏引起的先天性代谢障碍,导致患者血液和器官中苯丙氨酸(Phe)的积累。患者会出现严重的发育迟缓、神经功能缺陷和行为异常等特征。苯丙酮尿症早期筛查,能够让更多的患儿得到早期诊断,进而更早地接受治疗,最大程度上减轻苯丙氨酸对神经系统的损害。本文综述了其遗传方式、病因机制、目前预防和治疗的措施。
Phenylketonuria (PKU), also known as hyperphenylalaninemia, is a common single-gene genetic disease. It is a congenital metabolic disorder caused by the lack of functional phenylalanine hydroxylase (PAH), leading to the accumulation of phenylalanine (Phe) in the blood and organs of patients. Patients will have severe developmental retardation, neurological deficits and behavioral abnormalities. Early screening of phenylketonuria can enable more children to receive early diagnosis and treatment earlier, and minimize the damage of phenylalanine to the nervous system. This article reviews its genetic mode, pathogenesis, current prevention and treatment measures.
[1] | Yan, Y., Zhang, C., Jin, X., et al. (2019) Mutation Spectrum of PAH Gene in Phenylketonuria Patients in Northwest China: Identification of Twenty Novel Variants. Metabolic Brain Disease, 34, 733-745.
https://doi.org/10.1007/s11011-019-0387-7 |
[2] | van Wegberg, A., MacDonald, A., Ahring, K., et al. (2017) The Complete European Guidelines on Phenylketonuria: Diagnosis and Treatment. Orphanet Journal of Rare Diseases, 12, Article No. 162.
https://doi.org/10.1186/s13023-017-0685-2 |
[3] | Elhawary, N.A., AlJahdali, I.A., Abumansour, I.S., et al. (2022) Genetic Etiology and Clinical Challenges of Phenylketonuria. Human Genomics, 16, Article No. 22. https://doi.org/10.1186/s40246-022-00398-9 |
[4] | Blau, N., Shen, N. and Carducci, C. (2014) Molecular Genetics and Diagnosis of Phenylketonuria: State of the Art. Expert Review of Molecular Diagnostics, 14, 655-671. https://doi.org/10.1586/14737159.2014.923760 |
[5] | Rovelli, V. and Longo, N. (2023) Phenylketonuria and the Brain. Molecular Genetics and Metabolism, 139, Article ID: 107583. https://doi.org/10.1016/j.ymgme.2023.107583 |
[6] | Hoeks, M.P., den Heijer, M. and Janssen, M.C. (2009) Adult Issues in Phenylketonuria. The Netherlands Journal of Medicine, 67, 2-7. |
[7] | Feldmann, R., Osterloh, J., Onon, S., et al. (2019) Neurocognitive Functioning in Adults with Phenylketonuria: Report of a 10-Year Follow-Up. Molecular Genetics and Metabolism, 126, 246-249.
https://doi.org/10.1016/j.ymgme.2018.12.011 |
[8] | Dijkstra, A.M., van Vliet, N., van Vliet, D., et al. (2021) Correlations of Blood and Brain Biochemistry in Phenylketonuria: Results from the Pah-enu2 PKU Mouse. Molecular Genetics and Metabolism, 134, 250-256.
https://doi.org/10.1016/j.ymgme.2021.09.004 |
[9] | Blau, N. (2016) Genetics of Phenylketonuria: Then and Now. Human Mutation, 37, 508-515.
https://doi.org/10.1002/humu.22980 |
[10] | van Spronsen, F.J., Huijbregts, S.C., Bosch, A.M., et al. (2011) Cognitive, Neurophysiological, Neurological and Psychosocial Outcomes in Early-Treated PKU-Patients: A Start toward Standardized Outcome Measurement across Development. Molecular Genetics and Metabolism, 104, S45-S51. https://doi.org/10.1016/j.ymgme.2011.09.036 |
[11] | Azevedo, S.C., Ferreira, A.M., Soares, G., et al. (2023) Predicting Factors of Neurodevelopmental Performance in Children with Phenylketonuria. American Journal of Medical Genetics Part A, 191, 1525-1529.
https://doi.org/10.1002/ajmg.a.63174 |
[12] | Grant, M.L., Jurecki, E.R., McCandless, S.E., et al. (2023) Neuropsychiatric Function Improvement in Pediatric Patients with Phenylketonuria. The Journal of Pediatrics, 260, Article ID: 113526.
https://doi.org/10.1016/j.jpeds.2023.113526 |
[13] | 任丹, 于蕾, 李航, 等. 成人苯丙酮尿症1例家系分析并文献复习[J]. 卒中与神经疾病, 2023, 30(2): 204-205. |
[14] | Grohmann-Held, K., Burgard, P., Baerwald, C., et al. (2022) Impact of Pregnancy Planning and Preconceptual Dietary Training on Metabolic Control and Offspring’s Outcome in Phenylketonuria. Journal of Inherited Metabolic Disease, 45, 1070-1081. https://doi.org/10.1002/jimd.12544 |
[15] | De Giorgi, A., Nardecchia, F., Manti, F., et al. (2023) Neuroimaging in Early-Treated Phenylketonuria Patients and Clinical Outcome: A Systematic Review. Molecular Genetics and Metabolism, 139, Article ID: 107588.
https://doi.org/10.1016/j.ymgme.2023.107588 |
[16] | Rohr, F.J., Doherty, L.B., Waisbren, S.E., et al. (1987) New England Maternal PKU Project: Prospective Study of Untreated and Treated Pregnancies and Their Outcomes. The Journal of Pediatrics, 110, 391-398.
https://doi.org/10.1016/S0022-3476(87)80500-0 |
[17] | Drogari, E., Smith, I., Beasley, M., et al. (1987) Timing of Strict Diet in Relation to Fetal Damage in Maternal Phenylketonuria. An International Collaborative Study by the MRC/DHSS Phenylketonuria Register. The Lancet, 2, 927-930. https://doi.org/10.1016/S0140-6736(87)91418-8 |
[18] | Jervis, G.A. (1953) Phenylpyruvic Oligophrenia Deficiency of Phenylalanine-Oxidizing System. Proceedings of the Society for Experimental Biology and Medicine, 82, 514-515. |
[19] | van Spronsen, F.J., Blau, N., Harding, C., et al. (2021) Phenylketonuria. Nature Reviews Disease Primers, 7, Article No. 36. https://doi.org/10.1038/s41572-021-00267-0 |
[20] | (2021) Phenylketonuria. Nature Reviews Disease Primers, 7, Article No. 35.
https://doi.org/10.1038/s41572-021-00274-1 |
[21] | Lichter-Konecki, U. and Vockley, J. (2019) Phenylketonuria: Current Treatments and Future Developments. Drugs, 79, 495-500. https://doi.org/10.1007/s40265-019-01079-z |
[22] | Manti, F., Caviglia, S., Cazzorla, C., et al. (2022) Expert Opinion of an Italian Working Group on the Assessment of Cognitive, Psychological, and Neurological Outcomes in Pediatric, Adolescent, and Adult Patients with Phenylketonuria. Orphanet Journal of Rare Diseases, 17, Article No. 443. https://doi.org/10.1186/s13023-022-02488-2 |
[23] | Zori, R., Ahring, K., Burton, B., et al. (2019) Long-Term Comparative Effectiveness of Pegvaliase versus Standard of Care Comparators in Adults with Phenylketonuria. Molecular Genetics and Metabolism, 128, 92-101.
https://doi.org/10.1016/j.ymgme.2019.07.018 |
[24] | Hanley, W.B. (2004) Adult Phenylketonuria. The American Journal of Medicine, 117, 590-595.
https://doi.org/10.1016/j.amjmed.2004.03.042 |
[25] | Walter, J.H. and White, F.J. (2004) Blood Phenylalanine Control in Adolescents with Phenylketonuria. International Journal of Adolescent Medicine and Health, 16, 41-45. https://doi.org/10.1515/IJAMH.2004.16.1.41 |
[26] | Evers, R., van Wegberg, A., MacDonald, A., et al. (2022) Dietary Liberalization in Tetrahydrobiopterin-Treated PKU Patients: Does It Improve Outcomes? Nutrients, 14, Article No. 3874. https://doi.org/10.3390/nu14183874 |
[27] | Grisch-Chan, H.M., Schwank, G., Harding, C.O., et al. (2019) State-of-the-Art 2019 on Gene Therapy for Phenylketonuria. Human Gene Therapy, 30, 1274-1283. https://doi.org/10.1089/hum.2019.111 |
[28] | Puurunen, M.K., Vockley, J., Searle, S.L., et al. (2021) Safety and Pharmacodynamics of an Engineered E. coli Nissle for the Treatment of Phenylketonuria: A First-in-Human Phase 1/2a Study. Nature Metabolism, 3, 1125-1132.
https://doi.org/10.1038/s42255-021-00430-7 |
[29] | Charbonneau, M.R., Denney, W.S., Horvath, N.G., et al. (2021) Development of a Mechanistic Model to Predict Synthetic Biotic Activity in Healthy Volunteers and Patients with Phenylketonuria. Communications Biology, 4, Article No. 898. https://doi.org/10.1038/s42003-021-02183-1 |
[30] | Isabella, V.M., Ha, B.N., Castillo, M.J., et al. (2018) Development of a Synthetic Live Bacterial Therapeutic for the Human Metabolic Disease Phenylketonuria. Nature Biotechnology, 36, 857-864. https://doi.org/10.1038/nbt.4222 |