全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

In Silico Evaluation of the Potential Interference of Boceprevir, Calpain Inhibitor II, Calpain Inhibitor XII, and GC376 in the Binding of SARS-CoV-2 Spike Protein to Human Nanobody Nb20

DOI: 10.4236/ojbiphy.2023.133004, PP. 35-49

Keywords: SARS-CoV-2, Main protease Mpro, Boceprevir, Calpain Inhibitor II, Calpain Inhibitor XII, GC376, Nanobody Nb20, In Silico

Full-Text   Cite this paper   Add to My Lib

Abstract:

Virtual screening can be a helpful approach to propose treatments for COVID-19 by developing inhibitors for blocking the attachment of the virus to human cells. This study uses molecular docking, recovery time and dynamics to analyze if potential inhibitors of main protease (Mpro) of SARS-CoV-2 can interfere in the attachment of nanobodies, specifically Nb20, in the receptor binding domain (RBD) of SARS-CoV-2. The potential inhibitors are four compounds previously identified in a fluorescence resonance energy transfer (FRET)-based enzymatic assay for the SARS-CoV-2 Mpro: Boceprevir, Calpain Inhibitor II, Calpain Inhibitor XII, and GC376. The findings reveal that Boceprevir has the higher affinity with the RBD/Nb20 complex, followed by Calpain Inhibitor XII, GC376 and Calpain Inhibitor II. The recovery time indicates that the RBD/Nb20 complex needs a relatively short time to return to what it was before the presence of the ligands. For the RMSD the Boceprevir and Calpain Inhibitor II have the shortest interaction times, while Calpain Inhibitor XII shows slightly more interaction, but with significant pose fluctuations. On the other hand, GC376 remains stably bound for a longer duration compared to the other compounds, suggesting that they can potentially interfere with the neutralization process of Nb20.

References

[1]  Carlos, W.G., Dela Cruz, C.S., Cao, B., Pasnick, S. and Jamil, S. (2020) COVID-19 Disease Due to SARS-CoV-2 (Novel Coronavirus). American Journal of Respiratory and Critical Care Medicine, 201, 7-8.
https://doi.org/10.1164/rccm.2014P7
[2]  Unal, M. and Irez, T. (2020) COVID 19 Disease Caused by Coronavirus 2 (SARS-CoV-2) (Severe Acute Respiratory Syndrome). Asian Journal of Medicine and Health, 18, 1-11.
https://doi.org/10.9734/ajmah/2020/v18i430194
[3]  Flor, L.S., Friedman, J., Spencer, C.N., Cagney, J., Arrieta, A., Herbert, M.E., Stein, C., Mullany, E.C., Hon, J., Patwardhan, V., et al. (2022) Quantifying the Effects of the COVID-19 Pandemic on Gender Equality on Health, Social, and Economic Indicators: A Comprehensive Review of Data from March, 2020, to September, 2021. The Lancet, 399, 2381-2397.
https://doi.org/10.1016/S0140-6736(22)00008-3
[4]  Shiels, M.S., Haque, A.T., de Gonz′alez, A.B. and Freedman, N.D. (2022) Leading Causes of Death in the US during the COVID-19 Pandemic, March 2020 to October 2021. JAMA Internal Medicine, 182, 883-886.
https://doi.org/10.1001/jamainternmed.2022.2476
[5]  Elo, I.T., Luck, A., Stokes, A.C., Hempstead, K., Xie, W.B. and Preston, S.H. (2022) Evaluation of Age Patterns of COVID-19 Mortality by Race and Ethnicity from March 2020 to October 2021 in the US. JAMA Network Open, 5, e2212686.
https://doi.org/10.1001/jamanetworkopen.2022.12686
[6]  Aria, H., Mahmoodi, F., Ghaheh, H.S., Zare, H., Heiat, M., Bakherad, H., et al. (2022) Outlook of Therapeutic and Diagnostic Competency of Nanobodies against SARS-CoV-2: A Systematic Review. Analytical Biochemistry, 640, Article ID: 114546.
https://doi.org/10.1016/j.ab.2022.114546
[7]  World Health Organization (2021) WHO Coronavirus (COVID-19) Dashboard with Vaccination Data.
https://covid19.who.int/
[8]  Our World in Data (2023) Coronavirus (COVID-19) Vaccinations.
https://ourworldindata.org/covid-vaccinations
[9]  Kar, S., Devnath, P., Emran, T.B., Tallei, T.E., Mitra, S. and Dhama, K. (2022) Oral and Intranasal Vaccines against SARS-CoV-2: Current Progress, Prospects, Advantages, and Challenges. Immunity, Inflammation and Disease, 10, e604.
https://doi.org/10.1002/iid3.604
[10]  Dhama, K., Dhawan, M., Tiwari, R., Emran, T.B., Mitra, S., Rabaan, A.A., Alhumaid, S., Al Alawi, Z. and Al Mutair, A. (2022) COVID-19 Intranasal Vaccines: Current Progress, Advantages, Prospects, and Challenges. Human Vaccines & Immunotherapeutics, 18, e2045853.
https://doi.org/10.1080/21645515.2022.2045853
[11]  Stander, J., Mbewana, S. and Meyers, A.E. (2022) Plantderived Human Vaccines: Recent Developments. BioDrugs, 36, 573-589.
https://doi.org/10.1007/s40259-022-00544-8
[12]  Soleymani, S., Tavassoli, A. and Housaindokht, M.R. (2022) An Overview of Progress from Empirical to Rational Design in Modern Vaccine Development, with an Emphasis on Computational Tools and Immunoinformatics Approaches. Computers in Biology and Medicine, 140, Article ID: 105057.
https://doi.org/10.1016/j.compbiomed.2021.105057
[13]  Cheng, M.H., Krieger, J.M., Banerjee, A., Xiang, Y.F., Kaynak, B., Shi, Y., Arditi, M. and Bahar, I. (2022) Impact of New Variants on SARS-CoV-2 Infectivity and Neutralization: A Molecular Assessment of the Alterations in the Spike-Host Protein Interactions. iScience, 25, Article ID:103939.
https://doi.org/10.1016/j.isci.2022.103939
[14]  Tang, Q.L., Owens, R.J. and Naismith, J.H. (2021) Structural Biology of Nanobodies against the Spike Protein of SARS-CoV-2. Viruses, 13, Article 2214.
https://doi.org/10.3390/v13112214
[15]  Xia, X.H. (2021) Domains and Functions of Spike Protein in SARS-CoV-2 in the Context of Vaccine Design. Viruses, 13, Article 109.
https://doi.org/10.3390/v13010109
[16]  Tai, W.B., He, L., Zhang, X.J., Pu, J., Voronin, D., Jiang, S.B., Zhou, Y.S. and Du, L. (2020) Characterization of the Receptor-Binding Domain (RBD) of 2019 Novel Coronavirus: Implication for Development of RBD Protein as a Viral Attachment Inhibitor and Vaccine. Cellular & Molecular Immunology, 17, 613-620.
https://doi.org/10.1038/s41423-020-0400-4
[17]  Xiang, Y.F., Nambulli, S., Xiao, Z.Y., Liu, H., Sang, Z., Duprex, W.P., Schneidman-Duhovny, D., Zhang, C. and Shi, Y. (2020) Versatile and Multivalent Nanobodies Efficiently Neutralize SARS-CoV-2. Science, 370, 1479-1484.
https://doi.org/10.1126/science.abe4747
[18]  Pymm, P., Adair, A., Chan, L.J., Cooney, J.P., Mordant, F.L., Allison, C.C., Lopez, E., Haycroft, E.R., O’Neill, M.T., Tan, L.L., et al. (2021) Nanobody Cocktails Potently Neutralize SARS-CoV-2 D614G N501Y Variant and Protect Mice. Proceedings of the National Academy of Sciences, 118, e2101918118.
https://doi.org/10.1073/pnas.2101918118
[19]  Pereira Júnior, M.L., Junior, R.T., Nze, G.D., Giozza, W.F. and Júnior, L.A. (2021) Evaluation of Peppermint Leaf Flavonoids as SARS-CoV-2 Spike Receptor-Binding Domain Attachment Inhibitors to the Human ACE2 Receptor: A Molecular Docking Study. Open Journal of Biophysics, 12, 132-152.
https://doi.org/10.4236/ojbiphy.2022.122005
[20]  Xiu, S.Y., Dick, A., Ju, H., Mirzaie, S., Abdi, F., Cocklin, S., Zhan, P. and Liu, X.Y. (2020) Inhibitors of SARS-CoV-2 Entry: Current and Future Opportunities. Journal of Medicinal Chemistry, 63, 12256-12274.
https://doi.org/10.1021/acs.jmedchem.0c00502
[21]  Rodriguez, C., Luque, N., Blanco, I., Sebastian, L., Barber`a, J.A., Peinado, V.I. and Tura-Ceide, O. (2021) Pulmonary Endothelial Dysfunction and Thrombotic Complications in Patients with COVID-19. American Journal of Respiratory Cell and Molecular Biology, 64, 407-415.
https://doi.org/10.1165/rcmb.2020-0359PS
[22]  Astuti, I., et al. (2020) Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An Overview of Viral Structure and Host Response. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14, 407-412.
https://doi.org/10.1016/j.dsx.2020.04.020
[23]  Ma, C.L., Sacco, M.D., Hurst, B., Townsend, J.A. Hu, Y.M., Szeto, T., Zhang, X.J., Tarbet, B., Thomas Marty, M., Chen, Y., et al. (2020) Boceprevir, GC-376, and Calpain Inhibitors II, XII Inhibit SARS-CoV-2 Viral Replication by Targeting the Viral Main Protease. Cell Research, 30, 678-692.
https://doi.org/10.1038/s41422-020-0356-z
[24]  Fu, L.F., Ye, F., Feng, Y., Yu, F., Wang, Q.S., Wu, Y., Zhao, C., Sun, H., Huang, B.Y., Niu, P.H., et al. (2020) Both Boceprevir and GC376 Efficaciously Inhibit SARS-CoV-2 by Targeting Its Main Protease. Nature Communications, 11, Article No. 4417.
https://doi.org/10.1038/s41467-020-18233-x
[25]  Kim, S., Chen, J., Cheng, T.J., Gindulyte, A., He, J., He, S.Q., Li, Q.L., Shoemaker, B.A., Thiessen, P.A., Yu, B., et al. (2023) Pubchem 2023 Update. Nucleic Acids Research, 51, D1373-D1380.
https://doi.org/10.1093/nar/gkac956
[26]  Kochnev, Y., Hellemann, E., Cassidy, K.C. and Durrant, J.D. (2020) Webina: An Open-Source Library and Web App That Runs AutoDock Vina Entirely in the Web Browser. Bioinformatics, 36, 4513-4515.
https://doi.org/10.1093/bioinformatics/btaa579
[27]  Brooks, B.R., et al. (2009) CHARMM: The Biomolecular Simulation Program. Journal of Computational Chemistry, 30, 1545-1614.
https://doi.org/10.1002/jcc.21287
[28]  Salentin, S., Schreiber, S., Haupt, V.J., Adasme, M.F. and Schroeder, M. (2015) Plip: Fully Automated Protein—Ligand Interaction Profiler. Nucleic Acids Research, 43, W443-W447.
https://doi.org/10.1093/nar/gkv315
[29]  Zhang, X.X., Chen, Z.W., Chen, D.C., Cui, H. and Tang, J. (2020) Adsorption Behaviour of SO2 and SOF2 Gas on RH-Doped BNNT: A DFT Study. Molecular Physics, 118, e1580394.
https://doi.org/10.1080/00268976.2019.1580394
[30]  Timsorn, K. and Wongchoosuk, C. (2020) Adsorption of NO2, HCN, HCHO and CO on Pristine and Amine Functionalized Boron Nitride Nanotubes by Self-Con-sistent Charge Density Functional Tight-Binding Method. Materials Research Express, 7, Article ID: 055005.
https://doi.org/10.1088/2053-1591/ab8b8b
[31]  Peng, S., Cho, K., Qi, P.F. and Dai, H.J. (2004) Ab Initio Study of CNT NO2 Gas Sensor. Chemical Physics Letters, 387, 271-276.
https://doi.org/10.1016/j.cplett.2004.02.026
[32]  Phillips, J.C., Zheng, G.B., Kumar, S. and Kale, L.V. (2002) NAMD: Biomolecular Simulation on Thousands of Processors. Proceedings of the 2002 ACM/IEEE Conference on Supercomputing, Baltimore, 16-22 November 2002, 36.
https://doi.org/10.1109/SC.2002.10019
[33]  Klauda, J.B., Venable, R.M., Freites, J.A., O’Connor, J.W., Tobias, D.J., Mondragon-Ramirez, C., Vorobyov, I., MacKerell Jr, A.D. and Pastor, R.W. (2010) Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. The Journal of Physical Chemistry B, 114, 7830-7843.
https://doi.org/10.1021/jp101759q
[34]  Humphrey, W., Dalke, A. and Schulten, K. (1996) VMD: Visual Molecular Dynamics. Journal of Molecular Graphics, 14, 33-38.
https://doi.org/10.1016/0263-7855(96)00018-5
[35]  Fukunishi, Y., Yamashita, Y., Mashimo, T. and Nakamura, H. (2018) Prediction of Protein-Compound Binding Energies from Known Activity Data: Docking-Score-Based Method and Its Applications. Molecular Informatics, 37, Article ID: 1700120.
https://doi.org/10.1002/minf.201700120
[36]  Guler, H.I., Tatar, G., Yildiz, O., Belduz, A.O. and Kolayli, S. (2021) Investigation of Potential Inhibitor Properties of Ethanolic Propolis Extracts against ACE-II Receptors for COVID-19 Treatment by Molecular Docking Study. Archives of Microbiology, 203, 3557-3564.
https://doi.org/10.1007/s00203-021-02351-1
[37]  Khayrani, A.C., Irdiani, R., Aditama, R., Pratami, D.K., Lischer, K., Ansari, M.J., Chinnathambi, A., Ali Alharbi, S., Almoallim, H.S. and Sahlan, M. (2021) Evaluating the Potency of Sulawesi Propolis Compounds as ACE-2 Inhibitors through Molecular Docking for COVID-19 Drug Discovery Preliminary Study. Journal of King Saud University-Science, 33, Article ID: 101297.
https://doi.org/10.1016/j.jksus.2020.101297
[38]  Towler, P., Staker, B., Prasad, S.G., Menon, S., Tang, J., Parsons, T., Ryan, D., Fisher, M., Williams, D., Dales, N.A., et al. (2004) ACE2 X-Ray Structures Reveal a Large Hinge-Bending Motion Important for Inhibitor Binding and Catalysis. Journal of Biological Chemistry, 279, 17996-18007.
https://doi.org/10.1074/jbc.M311191200

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133