|
基于YOLOv5的车牌识别系统
|
Abstract:
近年来,车辆的数量不断增多,智能交通场景的不断完善,在现实生活中车牌识别技术的重要性显而易见,本文提出了一种YOLOv5网络与LPRNet网络相结合的技术,同时使用透视转化的方法对车牌进行校正,进而实现对车牌的定位与识别,该模型的模型召回率在99.7%,准确度84.4%,能够准确识别车牌号。本文先对研究的背景和内容进行了简单的介绍,接着对相关理论内容进行了概述,然后分析实验数据与结果,最后对本次研究进行总结。
In recent years, the number of vehicles has not increased significantly, and the continuous improvement of intelligent transportation sce-narios has made the importance of license plate recognition technology obvious in real life. This ar-ticle proposes a technology that combines YOLOv5 network and LPRNet network, and uses perspec-tive transformation method to correct the license plate, thereby achieving the positioning and recognition of the license plate. The model has a recall rate of 99.7%, an accuracy of 84.4%, and can accurately recognize the license plate. This article first provides a brief introduction to the back-ground and content of the research, followed by an overview of relevant theoretical content, analy-sis of experimental data and results, and finally a summary of this study.
[1] | Saini, M.K. and Saini, S. (2017) Multiwavelet Transform Based License Plate Detection. Journal of Visual Communica-tion and Image Representation, 44, 128-138. https://doi.org/10.1016/j.jvcir.2017.01.003 |
[2] | 顾李云. 基于图像处理的车牌识别算法的研究与设计[D]: [硕士学位论文]. 南京: 南京邮电大学, 2018. |
[3] | 王宁. 非受限场景下的车牌识别系统的研究与实现[D]: [硕士学位论文]. 南京: 南京邮电大学, 2020. |
[4] | 周世杰, 李顶根. 基于卷积神经网络的大场景下车牌识别[J]. 计算机工程与设计, 2020, 41(9): 2592-2596. |
[5] | 陈冬英, 黄悦, 李凌懿, 王杰, 高泽晖, 舒萍. 改进LeNet5-CNN的车牌识别工程应用优化设计[J]. 武夷学院学报, 2022, 41(12), 33-38. |