|
基于机器学习的新冠疑似人员预测
|
Abstract:
自2020年以来,新冠疫情的迅速扩散,对全世界的社会经济和公共卫生造成了十分严重的影响。如何快速准确地诊断和预测潜在的新冠病例是当前亟需解决的问题。机器学习技术具有处理大量数据、提高预测准确率等优势,在疫情防控中有广泛应用。本文基于机器学习算法,对疑似新冠人员的预测进行研究。通过随机函数生成有效病例数据,并利用SVM (Support Vector Machine)分类模型对其进行训练,经过多次实验,我们发现该模型能够准确地预测疾病,而且具有较高的可靠性。
Since 2020, the epidemic situation in COVID-19 has spread rapidly, which has had a very serious impact on social economy and public health all over the world. How to diagnose and predict potential COVID-19 cases quickly and accurately is an urgent problem at present. Machine learning technology has the advantages of processing large amounts of data and improving prediction accuracy, and has been widely used in epidemic prevention and control. Based on the machine learning algorithm, this paper studies the prediction of people suspected of COVID-19. The valid case data is generated by random functions and trained and tested using the SVM (Support Vector Machine) classification model, and after many experiments, we found that the model can accurately predict the disease and has high reliability.
[1] | 韩昇洙, 韩子砚. 新冠肺炎疫情如何影响全球经济[J]. 国际金融, 2020(7): 3-6.
https://doi.org/10.16474/j.cnki.1673-8489.2020.07.001 |
[2] | 吴金龙, 丁小兵, 刘志钢. 上海市轨道交通系统防疫策略研究——以新型冠状病毒肺炎疫情为背景[J]. 城市交通, 2020, 18(3): 46-50. https://doi.org/10.13813/j.cn11-5141/u.2020.0303 |
[3] | Daniel, F. (2020) 7 Applications of Machine Learning in Pharma and Medicine. TechEmergence. |
[4] | 詹骐源. 机器学习的发展史及应用前景[J]. 科技传播, 2018, 10(21): 138-139.
https://doi.org/10.16607/j.cnki.1674-6708.2018.21.069 |
[5] | Vaishya, V. and Vishwamitra, L.K. (2021) Diabetes Detection Using Neighborhood Component Analysis with SVM and Random Forest Classifier. Design Engineering, No. 6, 7534-7551. |
[6] | 王晓丽, 施天行, 彭德荣, 等. 两种机器学习算法构建老年冠心病患病风险评估模型的效能比较研究[J]. 中华全科医学, 2021, 19(4): 523-527. |
[7] | 任建强, 崔亚鹏, 倪顺江. 基于机器学习的新冠肺炎疫情趋势预测方法[J/OL]. 清华大学学报(自然科学版): 1-9.
https://doi.org/10.16511/j.cnki.qhdxxb.2023.22.006, 2023-05-15. |
[8] | 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 121-139. |
[9] | 王建国, 赵鹏飞, 张文兴, 秦波, 刘文婧. 多尺度高斯核支持向量机算法[J]. 机床与液压, 2020, 48(20): 5-8. |
[10] | 王鹏, 董平轩, 冉玉梅. 《概率论与数理统计》教学中随机数的Matlab实现[J]. 电脑知识与技术, 2023, 19(2): 138-140+161. https://doi.org/10.14004/j.cnki.ckt.2023.0106 |
[11] | 张晓军, 曹惠茹. Matlab中的随机函数[J]. 电脑编程技巧与维护, 2010(14): 115-116+127.
https://doi.org/10.16184/j.cnki.comprg.2010.14.002 |
[12] | 杨敬娜. 基于十折法的最小二乘支持向量机参数选取方法[J]. 机械工程师, 2011(12): 28-29. |