全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

黏弹介质槽波超前探测陷落柱三维数值模拟
Three-Dimensional Numerical Simulation of Collapse Column in Viscoelastic Medium with In-Seam Wave Advance Detection

DOI: 10.12677/ME.2023.113052, PP. 416-424

Keywords: 煤层,槽波,黏弹介质,超前探测,波场特征
Coal Seam
, In-Seam Wave, Viscoelastic Medium, Advance Detection, Wave Field Characteristics

Full-Text   Cite this paper   Add to My Lib

Abstract:

工作面前方隐伏陷落柱的存在常引发突水等安全事故,给煤矿安全生产与经济收益造成影响。实际地下煤层具有黏弹特性,会使地震波能量产生衰减。为研究实际煤矿中掘进巷道前方存在陷落柱条件下反射槽波的传播规律,建立了三维黏弹性含陷落柱煤系地质模型,对三维黏弹一阶速度–应力方程进行了高阶有限差分数值模拟,分析了三分量的波场快照与合成地震记录。结果表明,Y分量的反射Love槽波能量大、波形特征明显;X和Z分量的反射Rayleigh槽波能量较小、同相轴较模糊。因此,建议在实际煤矿开采时利用Love槽波超前探测陷落柱。
The existence of hidden collapse columns in front of the working face often causes safety accidents such as water inrush, which affects the safety production and economic benefits of coal mines. The actual underground coal seam has viscoelastic properties, which will cause attenuation of seismic wave energy. In order to study the propagation law of reflected in-seam wave under the condition of collapse column in front of tunneling roadway in actual coal mine, a three-dimensional viscoelastic coal measure geological model with collapse column was established. The high-order finite difference numerical simulation of three-dimensional viscoelastic first-order velocity-stress equation was carried out, and the three-component wave field snapshot and synthetic seismic record were analyzed. The results show that the reflected Love in-seam wave of Y component has large energy and obvious waveform characteristics. The reflected Rayleigh in-seam wave energy of the X and Z components is small and the in-phase axis is blurred. Therefore, it is suggested to use Love channel wave to detect collapse column in advance in actual coal mining.

References

[1]  李刚. 透射槽波在煤矿陷落柱探测中的应用[J]. 煤矿开采, 2016, 21(3): 39-42.
[2]  马欣, 杨思通, 李新凤, 等. 基于透射槽波的采煤工作面陷落柱探测模拟研究[J]. 煤矿安全, 2019, 50(4): 32-36.
[3]  杨思通. 矿井巷道地震超前探测三维全波场数值模拟与探测方法研究[D]: [博士学位论文]. 青岛: 山东科技大学, 2011.
[4]  王勃, 刘盛东, 胡泽安. 陷落柱地震波超前探测数值模拟与应用[J]. 中国煤炭地质, 2012, 24(3): 56-59+65.
[5]  李晓波, 董良国. 粘弹介质中可变网格地震波传播数值模拟[J]. 石油物探, 2012, 51(1): 1-10+111.
[6]  苑春方, 彭苏萍, 张中杰, 刘振宽. Kelvin-Voigt均匀黏弹性介质中传播的地震波[J]. 中国科学: D辑, 2005, 35(10): 957-962.
[7]  刘瑞珣, 张秉良, 张臣. 描述岩石粘弹性固体性质的开尔文模型[J]. 地学前缘, 2008, 15(3): 221-225.
[8]  王季, 叶红星, 张广忠, 等. 煤矿反射槽波探测技术研究评述[J]. 煤田地质与勘探, 2023, 51(2): 292-300.
[9]  程建远, 江浩, 姬广忠, 吴海. 基于节点式地震仪的煤矿井下槽波地震勘探技术[J]. 煤炭科学技术, 2015, 43(2): 25-28.
[10]  高玉超, 邓重青, 李继路. 槽波超前勘探技术在巷道前方探测断层的应用[J]. 山东煤炭科技, 2020(4): 166-168.
[11]  姬广忠. 煤巷侧帮反射槽波成像方法及应用研究[D]: [博士学位论文]. 北京: 煤炭科学研究总院, 2017.
[12]  杨莹. 二维地震波场有限差分法数值模拟研究[D]: [硕士学位论文]. 北京: 中国地质大学(北京), 2009.
[13]  陈可洋. 高阶弹性波波动方程正演模拟及逆时偏移成像研究[D]: [硕士学位论文]. 大庆: 大庆石油学院, 2009.
[14]  姬广忠, 程建远, 朱培民. 煤层Love型槽波数值模拟及其频散特征分析[J]. 煤炭科学技术, 2011, 39(6): 106-109.
[15]  Liu, Q.-H., Schoen, E., Daube, F., et al. (1996) A Three-Dimensional Finite Difference Simulation of Sonic Logging. The Journal of the Acoustical Society of America, 100, 72-79.
https://doi.org/10.1121/1.415869
[16]  李东会. 煤储层各向异性波场模拟与特征分析[D]: [博士学位论文]. 徐州: 中国矿业大学, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133