全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

植物激素调控生菜生长发育研究进展
Research Progress on Regulation of Growth and Development of Lettuce by Plant Hormones

DOI: 10.12677/HJAS.2023.137095, PP. 688-693

Keywords: 生菜,植物激素,生长发育
Lettuce
, Phytohormone, Growth and Development

Full-Text   Cite this paper   Add to My Lib

Abstract:

植物激素是由植物自身代谢产生的一类微量小分子有机物质,在植物生长发育、响应环境胁迫过程中起到关键作用。生菜口感脆嫩、营养丰富,是京津冀地区重要的叶菜之一。目前生菜植物激素研究较少,且多集中在IAA、GA等少数激素的功能研究上,缺乏调控机制研究。本文系统综述了植物激素在生菜生长发育、非生物与生物胁迫过程中所起到的作用以及调控机制,旨在对今后生菜植物激素调控机制的研究提供一定的研究思路和理论参考。
Plant hormones are a kind of micromolecular organic substances produced by plant metabolism, which play a key role in plant growth and development and response to environmental stress. Lettuce is one of the most important leafy vegetables in the Beijing-Tianjin-Hebei region. At present, there are few researches on lettuce plant hormones, and most of them focus on the function of IAA, GA and other hormones, and lack of studies on the regulatory mechanism. In this paper, the roles and regulatory mechanisms of plant hormones in the growth and development of lettuce, abiotic and biological stress processes were systematically reviewed, aiming to provide some research ideas and theoretical references for future research on the regulatory mechanisms of plant hormones in lettuce.

References

[1]  范双喜, 韩莹琰. 生菜品种与栽培[M]. 北京: 中国农业出版社, 2018: 1-10.
[2]  Hooper, L. and Cassidy, A. (2010) A Review of the Health Care Potential of Bioactive Compounds. Journal of the Science of Food & Agriculture, 86, 1805-1813.
https://doi.org/10.1002/jsfa.2599
[3]  杨攀, 杨诗雯, 李磊, 等. 生菜研究进展综述[J]. 现代园艺, 2020, 43(15): 34-36.
[4]  Verma, V., Ravindran, P. and Kumar, P.P. (2016) Plant Hormone-Mediated Regulation of Stress Responses. BMC Plant Biology, 16, Article No. 86.
https://doi.org/10.1186/s12870-016-0771-y
[5]  Zhouli, Xie, Trevor, et al. (2019) AP2/ERF Tran-scription Factor Regulatory Networks in Hormone and Abiotic Stress Responses in Arabidopsis. Frontiers in Plant Science, 10, 228.
[6]  Sankhla, N. and Sankhla, D. (1972) Lettuce Seed Germination: Interaction between Auxin and 2-Chloroethanephosphonic acid (Ethrel). Biologia Plantarum, 14, 321-324.
https://doi.org/10.1007/BF02933182
[7]  张晨雪, 韩颖颖, 李维杰, 等. 程序降温过程中吲哚乙酸对生菜种子抗低温胁迫的影响[J]. 种子, 2017, 36(4): 1-5, 8.
[8]  陈晨, 李秉妍, 范双喜, 等. 外源生长素和赤霉素对叶用莴苣生长的影响[J]. 北京农学院学报, 2019, 34(4): 36-39.
[9]  Normanly, J. (1997) Auxin Metabolism. Physio-logia Plantarum, 100, 431-442.
https://doi.org/10.1111/j.1399-3054.1997.tb03047.x
[10]  刘晓英, 焦学磊, 徐志刚, 等. 红蓝LED光对叶用莴苣生长、营养品质和硝态氮含量的影响[J]. 南京农业大学学报, 2013, 36(5):139-143.
[11]  刘慧, 郝敬虹, 韩莹琰, 等. 高温诱导叶用莴苣抽薹过程中内源激素含量变化分析[J]. 中国农学通报, 2014, 30(25): 97-103.
[12]  刘旭东. 植物生长调节剂对叶用莴苣的抽薹调控效应研究[D]: [硕士学位论文]. 武汉: 华中农业大学, 2016.
[13]  田皓, 王昱卜, 杜巍, 等. 外源生长素对叶用莴苣抽薹及相关生理的影响[J]. 北京农学院学报, 2021, 36(4): 20-24..
[14]  Gao S. and Chu C. (2020) Gibberellin Metabolism and Signaling: Targets for Improving Agronomic Performance of Crops. Plant and Cell Physiology, 61, 1902-1911.
https://doi.org/10.1093/pcp/pcaa104
[15]  Wang, Y., Li, B., Li, Y., et al. (2022) Application of Exogenous Auxin and Gibberellin Regulates the Bolting of Lettuce (Lactuca sativa L.). Open life sciences, 17, 438-446.
https://doi.org/10.1515/biol-2022-0043
[16]  谢国蓉, 黄慧珍, 曹丽敏, 等. 不同浓度赤霉素对罗马直立生菜种子萌发和早期发育的影响[J]. 天津农业科学, 2019, 25(12): 24-27.
[17]  张平, 奥岩松. 高效生物肥料在春季结球生菜上的应用[J]. 上海农业学报, 2010, 26(4):109-112.
[18]  张润花, 刘旭东, 王斌才, 等. 赤霉素(GA3)对叶用莴苣抽薹特性的影响[J]. 长江蔬菜, 2016(22): 67-79.
[19]  曹菲菲. 6-BA和GA3对高温胁迫下叶用莴苣种子萌发及幼苗生长的影响[D]: [硕士学位论文]. 河北工程大学, 2017.
[20]  吕艳春. 不同处理对结球生菜和绿芦笋采后保鲜技术的研究[D]: [硕士学位论文]. 北京: 中国农业大学, 2003.
[21]  王忠. 植物生理学[M]. 北京: 中国农业出版社出版, 2000: 285.
[22]  Argyris, J., Dahal, P., Hayashi, E., Still, D.W. and Bradford, K.J. (2008) Genetic Variation for Lettuce Seed Thermoinhibition Is Associated with Temperature-Sensitive Expression of Abscisic Acid, Gibberellin and Ethylene Biosynthesis, Metabolism and Response Genes. Plant Physiology, 148, 926-947.
https://doi.org/10.1104/pp.108.125807
[23]  Dawuda, M.M. 外源脱落酸缓解生菜镉胁迫的机理研究[D]: [博士学位论文]. 兰州: 甘肃农业大学, 2020.
[24]  Xie, Y., Sun, G., Wang, L. and and Tang, Y. (2018) Effects of Spraying Abscisic Acid on Photosynthetic Physiology of Lettuce Seedlings under Salt Stress. IOP Conference Series: Earth and Environmental Science, 199, Article ID: 0520011.
https://doi.org/10.1088/1755-1315/199/5/052011
[25]  Liu, S., Ming, Y., Zhao, H., et al. (2015) Exogenous Abscisic ACID In-hibits the Water-Loss of Postharvest Romaine Lettuce during Storage by Inducing Stomatal Closure. Ciência E Tecnologia De Alimen-tos, 35, 729-733.
https://doi.org/10.1590/1678-457X.0002
[26]  Pech, J.C., Purgatto, E., Bouzayen, M., et al. (2012) Chapter 11: Ethylene and Fruit Ripening. In: Annual Plant Reviews, Vol. 44, Wiley-Blackwell, 275-304.
https://doi.org/10.1002/9781118223086.ch11
[27]  Rudnicki, R.M., Braun, J.W. and Khan, A.A. (2010) Low Pressure and Eth-ylene in Lettuce Seed Germination. Physiologia Plantarum, 43, 189-194.
https://doi.org/10.1111/j.1399-3054.1978.tb02562.x
[28]  张丽欣, 宗汝静. 乙烯对叶菜衰老的影响及光对乙烯作用的增效作用[J]. 华北农学报, 1987(4): 121-125.
[29]  Qin, L., He, J., Lee, S.K. and Dodd, I.C. (2007) An Assessment of the Role of Ethylene in Mediating Lettuce (Lactuca sativa) Root Growth at High Temperatures. Journal of Experimental Botany, 58, 3017-3024.
https://doi.org/10.1093/jxb/erm156
[30]  Bielach, A., Hrtyan, M. and Tognetti, V.B. (2017) Plants under Stress: Involvement of Auxin and Cytokinin. Intemational Joumal of Molecular Sciences, 18, Article 1427.
https://doi.org/10.3390/ijms18071427
[31]  Ha, S., Vankova, R., Yamaguchi-Shinozaki, K., et al. (2012) Cytokinins: Metabolism and Function in Plant Adaptation to Environmental Stresses. Trends in Plant Science, 17, 172-179.
https://doi.org/10.1016/j.tplants.2011.12.005
[32]  孙丽静, 赵慧, 吕亮杰, 等. 小麦细胞分裂素受体基因TaHK1的生物信息学及表达特性分析[J]. 华北农学报, 2019, 34(4): 75-82.
[33]  Su-Che, C. (1983) Effects of Cytokinin and Several Inorganic Cations on the Polyamine Content of Lettuce Cotyledons. Plant & Cell Physiology, 1.
[34]  Fountain, D.W. and Bewley, J.D. (1976) Lettuce Seed Germination: Modulation of Pregermination Protein Synthesis by Gibberellic Acid, Abscisic Acid, and Cytokinin 1. Plant Physi-ology, 58, 530-536.
https://doi.org/10.1104/pp.58.4.530
[35]  Araki, A., Rattin, J., Benedetto, A.D., et al. (2007) Temperature and Cytokinin Rela-tionships on Lettuce (Lactuca sativa L.) and Celery (Apium graveolens L.) Nursery Growth and Yield. International Journal of Agri-cultural Research, 2, 725-730.
https://doi.org/10.3923/ijar.2007.725.730
[36]  廖雅汶, 成臣, 卢占军, 等. 不同细胞分裂素浓度对生菜穴盘基质育苗质量的影响[J]. 山东农业大学学报(自然科学版), 2022, 53(3): 362-367.
[37]  Noguchi. H.K. (2000) Ef-fects of Plant Hormones on the Activity of Alcohol Dehydrogenase in Lettuce Seedlings. Journal of Plant Physiology, 157, 223-225.
https://doi.org/10.1016/S0176-1617(00)80194-7
[38]  Lv, Y., Pan, J., Wang, H., et al. (2021) Melatonin Inhibits Seed Germina-tion by Crosstalk with Abscisic acid, Gibberellin, and Auxin in Arabidopsis. Journal of Pineal Research, 70, e12736.
https://doi.org/10.1111/jpi.12736
[39]  Miao. R., Yuan, W., Wang, Y., et al. (2021) Low ABA Concentration Promotes Root Growth and Hydrotropism through Relief of ABA Insensitive 1-Mediated Inhibition of Plasma Membrane H+-ATPase 2. Science Ad-vances, 7, eabd4113.
https://doi.org/10.1126/sciadv.abd4113
[40]  He, Y., Zhao, J., Yang, B., et al. (2020) Indole-3-Acetate β-Glucosyltransferase OsIAGLU Regulates Seed Vigour through Mediating Crosstalk between Auxin and Abscisic Acid in Rice. Plant Biotechnology Journal, 18, 1933-1945.
https://doi.org/10.1111/pbi.13353
[41]  Song, J., Bian, J., Xue, N., et al. (2022) Inter-Species mRNA Transfer among Green Peach Aphids, Dodder Parasites and Cucumber Host Plants. Plant Diversity, 44, 1-10.
https://doi.org/10.1016/j.pld.2021.03.004
[42]  Yu, Z., Duan, X., Luo, L., et al. (2020) How Plant Hormones Mediate Salt Stress Responses. Trends in Plant Science, 25, 1117-1130.
https://doi.org/10.1016/j.tplants.2020.06.008

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133