|
Botanical Research 2023
拟南芥尿黑酸双加氧酶基因突变体转录组分析
|
Abstract:
尿黑酸双加氧酶(Homogentisate dioxygenase, HGO)催化酪氨酸降解代谢第三步反应。HGO突变会促进拟南芥生长。该研究对拟南芥hgo突变体和野生型的转录组进行分析,探究HGO影响拟南芥生长的机制。结果表明,突变体和野生型间1413个基因表达存在差异;其中741个基因在突变体中表达上调,672个基因在突变体中表达下调。GO功能注释显示,差异基因显著富集在生长素响应、氨基酸代谢、谷胱甘肽代谢等过程。KEGG通路分析显示,差异基因主要涉及苯丙烷类生物合成、类黄酮生物合成、MAPK信号途径、谷胱甘肽代谢、植物激素信号传导、淀粉和蔗糖代谢等通路。研究结果表明HGO可能通过影响苯丙烷类生物合成和激素信号传导等调控拟南芥生长。该研究结果可为进一步探究酪氨酸降解代谢在植物中的功能奠定基础。
Homogentisate dioxygenase (HGO) catalyzes the third step of tyrosine catabolism. HGO mutation promoted growth of Arabidopsis. Transcriptome sequencing of the hgo mutant and wild type was performed to elucidate the mechanism of HGO function. The results were as follows: 1413 differentially expressed genes were identified between the mutant and wild type. Among them, 741 genes were up-regulated, and 672 genes were down-regulated in the mutant. GO annotation analysis indicated that these genes were significantly enriched in auxin response, amino acid metabolism, and glutathione metabolism. KEGG revealed that differentially expressed genes mainly participated in phenylpropanoid biosynthesis, flavonoid biosynthesis, MAPK signaling pathway, glutathione metabolism, plant hormone signal transduction, starch and sucrose metabolism. The data suggested that HGO might regulate Arabidopsis development by modulating phenylpropanoid biosynthesis and plant hormone signal transduction, providing a basis for exploring function of tyrosine catabolism in plants.
[1] | Dixon, D.P. and Edwards, R. (2006) Enzymes of Tyrosine Catabolism in Arabidopsis thaliana. Plant Science, 171, 360-366. https://doi.org/10.1016/j.plantsci.2006.04.008 |
[2] | Macias, I., Laín, A., Bernardo-Seisdedos, G., Gil, D., Gonzalez, E., Falcon-Perez, J.M. and Millet, O. (2019) Hereditary Tyrosinemia Type I-Associated Mutations in Fumarylacetoacetate Hydrolase Reduce the Enzyme Stability and Increase its Aggregation Rate. Journal of Biological Chemistry, 294, 13051-13060.
https://doi.org/10.1074/jbc.RA119.009367 |
[3] | Culic, V., Betz, R.C., Refke, M., Fumic, K. and Pavelic, J. (2011) Tyrosinemia Type II (Richner-Hanhart Syndrome): A New Mutation in the TAT Gene. European Journal of Medical Genetics, 54, 205-208.
https://doi.org/10.1016/j.ejmg.2010.11.013 |
[4] | Barroso, F., Correia, J., Bandeira, A., Carmona, C., Vilarinho, L., Almeida, M., Rocha, J.C. and Martins, E. (2020) Tyrosinemia Type III: A Case Report of Siblings and Literature Review. Revista Paulista de Pediatria, 38, e2018158.
https://doi.org/10.1590/1984-0462/2020/38/2018158 |
[5] | Davison, A.S., Hughes, A.T., Milan, A.M., Sireau, N., Gallagher, J.A. and Ranganath, L.R. (2020) Alkaptonuria-Many Questions Answered, Further Challenges Beckon. Annals of Clinical Biochemistry: International Journal of Laboratory Medicine, 57, 106-120. https://doi.org/10.1177/0004563219879957 |
[6] | Schenck, C.A. and Maeda, H.A. (2018) Tyrosine Biosynthesis, Metabolism and Catabolism in Plants. Phytochemistry, 149, 82-102. https://doi.org/10.1016/j.phytochem.2018.02.003 |
[7] | Han, C., Ren, C., Zhi, T., Zhou, Z., Liu, Y., Chen, F., Peng, W. and Xie, D. (2013) Disruption of Fumarylacetoacetate Hydrolase Causes Spontaneous Cell Death under Short-day Conditions in Arabidopsis. Plant Physiology, 162, 1956-1964. https://doi.org/10.1104/pp.113.216804 |
[8] | Hu, C., Huang, L., Chen, Y., Liu, J., Wang, Z., Gao, B., Zhu, Q. and Ren, C. (2021) Fumarylacetoacetate Hydrolase Is Required for Fertility in Rice. Planta, 253, Article No. 122. https://doi.org/10.1007/s00425-021-03632-1 |
[9] | Hildebrandt, T.M., Nunes Nesi, A., Araújo, W.L. and Braun, H.P. (2015) Amino Acid Catabolism in Plants. Molecular Plant, 8, 1563-1579. https://doi.org/10.1016/j.molp.2015.09.005 |
[10] | Stacey, M.G., Cahoon, R.E., Nguyen, H.T., Cui, Y., Sato, S., Nguyen, C.T., Phoka, N., Clark, K.M., Liang, Y., Forrester, J., Batek, J., Do, P.T., Sleper, D.A., Clemente, T.E., Cahoon, E.B. and Stacey, G. (2016) Identification of Homogentisate Dioxygenase as a Target for Vitamin E Biofortification in Oilseeds. Plant Physiology, 172, 1506-1518.
https://doi.org/10.1104/pp.16.00941 |
[11] | 陈彦成, 赵杨, 刘之熙, 黄丽华, 任春梅. 不同光周期及不同胁迫对水稻OsHGO基因表达的影响[J]. 湖南农业科学, 2019(7): 1-3, 8. |
[12] | Heinemann, B. and Hildebrandt, T.M. (2021) The Role of Amino Acid Metabolism in Signaling and Metabolic Adaptation to Stress-Induced Energy Deficiency in Plants. Journal of Experimental Botany, 72, 4634-4645.
https://doi.org/10.1093/jxb/erab182 |
[13] | 陈彦成, 钱伟超, 彭志红, 任春梅. 酪氨酸及酪氨酸降解途径中HGO基因突变对拟南芥幼苗生长的影响[J]. 作物研究, 2014, 28(3): 251-253. |
[14] | 薛守宇, 朱涛, 李冰冰, 李涛涛. 转录组和代谢组联合分析在植物中的应用研究[J]. 山西农业大学学报(自然科学版), 2022, 42(3): 1-13. |
[15] | Kim, D., Langmead, B. and Salzberg, S.L. (2015) HISAT: A Fast Spliced Aligner with Low Memory Requirements. Nature Methods, 12, 357-360. https://doi.org/10.1038/nmeth.3317 |
[16] | Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T. and Salzberg, S.L. (2015) StringTie Enables Improved Reconstruction of a Transcriptome from RNA-seq Reads. Nature Biotechnology, 33, 290-295.
https://doi.org/10.1038/nbt.3122 |
[17] | Florea, L., Song, L. and Salzberg, S.L. (2013) Thousands of Exon Skipping Events Differentiate Among Splicing Patterns in Sixteen Human Tissues. F1000Research, 2, 188. https://doi.org/10.12688/f1000research.2-188.v1 |
[18] | Love, M.I., Huber, W. and Anders, S. (2014) Moderated Estimation of Fold Change and Dispersion for RNA-seq Data with DESeq2. Genome Biology, 15, Article No. 550. https://doi.org/10.1186/s13059-014-0550-8 |
[19] | Le Roy, J., Huss, B., Creach, A., Hawkins, S. and Neutelings, G. (2016) Glycosylation Is a Major Regulator of Phenylpropanoid Availability and Biological Activity in Plants. Frontiers in Plant Science, 7, Article 735.
https://doi.org/10.3389/fpls.2016.00735 |
[20] | Danquah, A., de Zelicourt, A., Colcombet, J. and Hirt, H. (2014) The Role of ABA and MAPK Signaling Pathways in Plant Abiotic Stress Responses. Biotechnology Advances, 32, 40-52. https://doi.org/10.1016/j.biotechadv.2013.09.006 |
[21] | Brookbank, B.P., Patel, J., Gazzarrini, S. and Nambara, E. (2021) Role of Basal ABA in Plant Growth and Development. Genes, 12, Article 1936. https://doi.org/10.3390/genes12121936 |