Cucurbita ficifolia Bouché Regulates the Metabolism of Carbohydrates and Lipids in Liver by Activation of PPARα without Affectation on PPARγ in Vivo and in Vitro
Diabetes mellitus control in Mexico is practiced by using antidiabetic
agents and, by empirical way using medicinal plants. Cucurbitaficifolia (C.ficifolia) has been
attributed with hypoglycemic, hypotriglyceridemic, and anti-inflam- matory effects, and D-chiro-inositol (DCI),
4-hydroxybenzoic acid, and β-sitosterol
were proposed as active principles. The last two compounds were suggested as
activators of two transcription factors, PPARα and PPARγ, in C2C12
myocytes, which participate in β-oxidation
of fatty acids and insulin sensitivity.
However, the involvement of the hepatocytic and adipocytic PPARs in the
effects of C.ficifolia has not yet been explored. This research aimed to determine the effects of C.ficifolia on PPARα, PPARγ, and inflammatory cytokines in streptozotocin (STZ)-induced
diabetes mice, HepG2 hepatocytes and 3T3-L1 adipocytes, implicating two
additional cell types associated with metabolism of carbohydrates and lipids.
STZ-induced diabetes mice received C.ficifolia (200 mg/kg/day) for 30 days, measuring serum
cytokines (TNF-α and IL-6). RNA was
extracted from liver. Besides, HepG2 and 3T3-L1 cells were incubated (24 h)
with C.ficifolia (0.078 mM DCI), using pioglitazone or fenofibrate
as controls. RNA was also extracted from cells and PCR in real-time was
performed to determinate PPARα and
PPARγ expression. In diabetic
animals, C.ficifolia decreased glycemia and body weight, decreasing the expression level of TNF-α and IL-6. In addition, C.ficifolia increased PPARα expression in liver of diabetic
animals, in HepG2 and 3T3-L1 cells; PPARγ expression only significantly increased in HepG2 cells. The data suggest that
the effects on the glycemia and lipids of C.ficifolia and its anti-inflammatory effects imply,
besides skeletal muscle cells, hepatic and adipocytic PPARα activation, without affectation on PPARγ. PPARs regulation by C. ficifolia may improve the metabolic
dysfunctions associated with metabolic disease, controlling the intake,
activation, and oxidation of fatty acids and lipid storage.
References
[1]
Acosta-Patino, J.L., Jimenez-Balderas, E., Juarez-Oropeza, M.A. and Diaz-Zagoya, J.C. (2001) Hypoglycemic Action of Cucurbita ficifolia on Type 2 Diabetic Patients with Moderately High Blood Glucose Levels. Journal of Ethnopharmacology, 77, 99-101. https://doi.org/10.1016/S0378-8741(01)00272-0
[2]
Alarcon-Aguilar, F.J., Hernandez-Galicia, E., Campos-Sepulveda, A.E., Xolalpa-Molina, S., Rivas-Vilchis, J.F., Vazquez-Carrillo, L.I. and Roman-Ramos, R. (2002) Evaluation of the Hypoglycemic Effect of Cucurbita ficifolia Bouche (Cucurbitaceae) in Different Experimental Models. Journal of Ethnopharmacology, 82, 185-189.
https://doi.org/10.1016/S0378-8741(02)00176-9
[3]
Banderas, D.T.R., Roman, R.R., Zamilpa, A., Garcia, M.R., Diaz, M., Campos, M.G., Tortoriello, J. and Alarcon, A.F.J. (2012) Influence of Two Hypoglycemic Cucurbitaceae (Cucurbita ficifolia Bouché and Ibervillea sonorae Greene) on ATP-Sensitive Potassium Channels in Rat Aortic Rings. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 11, 510-519.
[4]
Miranda-Perez, M.E., Ortega-Camarillo, C., Escobar-Villanueva, M.C., Blancas-Flores, G. and Alarcon-Aguilar, F.J. (2016) Cucurbita ficifolia Bouche Increases Insulin Secretion in RINm5F Cells through an Influx of Ca2+ from the Endoplasmic Reticulum. Journal of Ethnopharmacology, 188, 159-166.
https://doi.org/10.1016/j.jep.2016.04.061
[5]
Garcia-Gonzalez, J., Garcia Lorenzana M., Zamilpa A., Almanza Perez, J.C., Jasso Villagomez, E.I., Roman Ramos, R. and Alarcon-Aguilar, F.J. (2017) Chemical Characterization of a Hypoglycemic Extract from Cucurbita ficifolia Bouche That Induces Liver Glycogen Accumulation in Diabetic Mice. African Journal of Traditional and Complementary and Alternative Medicine, 14, 218-230.
http://journals.sfu.ca/africanem/index.php/ajtcam/article/view/4677
https://doi.org/10.21010/ajtcam.v14i3.24
[6]
Roman Ramos, R., Almanza Pérez, J.C., Fortis Barrera, A., Angeles Mejia, S., Banderas Dorantes, T.R., Zamilpa Alvarez, A., Diaz Flores, M., Jasso, I., Blancas Flores, G., Gomez, J. and Alarcon Aguilar, F.J. (2012) Antioxidant and Anti-Inflammatory Effects of Hypoglycemic Fraction from Cucurbita ficifolia Bouche in Streptozotocin-Induced Diabetes Mice. American Journal of Chinese Medicine, 40, 97-110.
https://doi.org/10.1142/S0192415X12500085
[7]
Díaz, F.M., Angeles, M.S., Baiza, G.L.A., Medina, N.R., Hernandez, S.D., Ortega, C.C., Roman, R.R., Cruz, M. and Alarcon, A.F.J. (2012) Effect of an Aqueous Extract of Cucurbita ficifolia Bouché on the Glutathione Redox Cycle in Mice with STZ-Induced Diabetes. Journal of Ethnopharmacology, 144, 101-108.
https://doi.org/10.1016/j.jep.2012.08.036
[8]
Fortis, B.M.A., Alarcón, A.F.J., Banderas D.T., Díaz, F.M, Román, R.R., Cruz, M. and García, M.R. (2013) Cucurbita ficifolia Bouché (Cucurbitaceae) and D-chiro-Inositol Modulate the Redox State and Inflammation in 3T3-L1 Adipocytes. Journal of Pharmacy and Pharmacology, 65, 1563-1576.
https://doi.org/10.1111/jphp.12119
[9]
Fortis, B.M.A., García-M.R., Almanza, P.J.C., Blancas, F.G., Zamilpa, A.A., Flores, S.J.L., Cruz, M., Román, R.R. and Alarcón, A.F.J. (2017) Cucurbita ficifolia Bouché (Cucurbitaceae) Modulates Inflammatory Cytokines and IFN-γ in Obese Mice. Canadian Journal of Physiology and Pharmacology, 95, 170-177.
https://doi.org/10.1139/cjpp-2015-0475
[10]
Xia, T. and Wang, Q. (2006) D-chiro-inositol Found in Cucurbita ficifolia (Cucurbitaceae) Fruit Plays a Hypoglycaemic Role in Streptozocin-Diabetic Rats. Journal of Pharmacy and Pharmacology, 58, 1527-1532.
https://doi.org/10.1211/jpp.58.10.0014
[11]
Rosiles, A.W., Zamilpa, A., García, M.R., Zavala, S.M.A., Hidalgo, F.S., Mora Ramiro, B., Román, R.R., Estrada Soto, S.E. and Almanza, P.J.C. (2022) 4-Hydroxybenzoic Acid and Beta-Sitosterol from Cucurbita ficifolia Act as Insulin Secretagogues, Peroxisome Proliferator-Activated Receptor-Gamma Agonists, and Liver Glycogen Storage Promoters: In Vivo, in Vitro, and in Silico Studies. Journal of Medicinal Food, 25, 588-596. https://doi.org/10.1089/jmf.2021.0071
[12]
Kersten, S., Desvergne, B. and Wahli, W. (2000) Roles of PPAR in Health and Disease. Nature, 405, 421-424. https://doi.org/10.1038/35013000
[13]
Evans, R.M., Barish, G.D. and Wang, Y.X. (2004) PPARs and the Complex Journey to Obesity. Natural Medicine, 10, 355-361. https://doi.org/10.1038/nm1025
[14]
Wang, Y., Nakajima, T., Gonzalez, F.J. and Tanaka, N. (2020) PPARs as Metabolic Regulators in the Liver. Lessons from Liver-Specific PPAR-Null Mice. International Journal of Molecular Sciences, 21, Article No. 2061.
https://doi.org/10.3390/ijms21062061
[15]
Guerre-Millo, M. (2004) Adipose Tissue and Adipokines: for Better or Worse. Diabetes Metabolism, 30, 13-19. https://doi.org/10.1016/S1262-3636(07)70084-8
[16]
Fiévet, C., Fruchart, J.C. and Staels, B. (2006) PPARα and PPARγ Dual Agonists for the Treatment of Type 2 Diabetes and the Metabolic Syndrome. COPHAR, 6, 606-614.
https://doi.org/10.1016/j.coph.2006.06.009
[17]
Fasshauer, M., Klein, J., Lossner, U. and Paschke, R. (2003) Interleukin (IL)-6 mRNA Expression Is Stimulated by Insulin, Isoproterenol, Tumor Necrosis Factor-Alpha, Growth Hormone, and IL-6 in 3T3-L1 Adipocytes. Hormone and Metabolic Research, 35, 147-152. https://doi.org/10.1055/s-2003-39075
[18]
Dehoux, M.J., Van Beneden, R.P., Fernandez-Celemin, L., Lause, P.L. and Thiissen, J.P. (2003) Induction of MafBx and Murf Ubiquitin Ligase mRNAs in Rat Skeletal Muscle Alter LPS Injection. FEBS Letters, 544, 214-217.
https://doi.org/10.1016/S0014-5793(03)00505-2
[19]
Gross, B. and Staels, B. (2007) PPAR Agonists: Multimodal Drugs for the Treatment of Type-2 Diabetes. Best Practice & Research Clinical Endocrinology & Metabolism, 21, 687-710. https://doi.org/10.1016/j.beem.2007.09.004
[20]
Dunn, F.L., Higgins, L.S., Fredrickson, J. and DePaoli, A.M. (2010) Selective Modulation of PPARγ Activity Can Lower Plasma Glucose without Typical Thiazolidinedione Side Effects in Patients with Type 2 Diabetes. Journal of Diabetes Complications, 25, 151-158. https://doi.org/10.1016/j.jdiacomp.2010.06.006
[21]
Tahrani, A.A., Piya, M.K., Kennedy, A. and Bammet, A.H. (2010) Glycaemic Control in Type 2 Diabetes: Targets and New Therapies. Pharmacology & Therapeutics, 125, 328-361. https://doi.org/10.1016/j.pharmthera.2009.11.001
[22]
Berger, J. and Moller, D.E. (2002) The Mechanisms of Action PPARs. Annual Review of Medicine, 53, 409-435.
https://doi.org/10.1146/annurev.med.53.082901.104018
[23]
Haluzík, M.M. and Haluzík, M. (2006) PPAR-α and Insulin Sensitivity. Physiological Research, 55, 115-122. https://doi.org/10.33549/physiolres.930744
[24]
Li, L.O., Ellis, J.M., Paich, H.A., Wang, S., Gong, N., Altshuller, G., Thresher, R.J., Koves, T.R., Watkins, S.M., Muoio, D.M., Cline, G.W., Shulman, G.I. and Coleman, R.A. (2009) Liver-Specific Loss of Long Chain acyl-CoA Synthetase-1 Decreases Triacylglycerol Synthesis and β-Oxidation and Alters Phospholipid Fatty Acid Composition. Journal of Biological Chemistry, 284, 27816-27826.
https://doi.org/10.1074/jbc.M109.022467
[25]
Soupene, E. and Kuypers, F.A. (2008) Mammalian Long-Chain acyl-CoA Synthetases. Experimental Biology Medicine, 233, 507-521.
https://doi.org/10.3181/0710-MR-287
[26]
Young, P.A., Senkal, C.E., Suchanek, A.L., Grevengoe, T.J., Lin, D.D., Zhao, L., Crunk, A.E., Klett, E.L., Füllerkrug, J., Obeid, L.M. and Coleman, R.A. (2018) Long-Chain acyl-CoA Synthetase 1 Interacts with Key Proteins That Activate and Direct Fatty Acids into Niche Hepatic Pathways. Journal of Biological Chemistry, 293, 16724-16740. https://doi.org/10.1074/jbc.RA118.004049
[27]
Kawai, M. and Rosen, C.J. (2010) PPARγ: A Circadian Transcription Factor in Adipogenesis and Osteogenesis. Nature Review Endocrinology, 6, 629-636.
https://doi.org/10.1038/nrendo.2010.155
[28]
Geisler, C.E. and Renquist, B.J. (2017) Hepatic Lipid Accumulation: Cause and Consequence of Dysregulated Glucoregulatory Hormones. Journal of Endocrinology, 234, 1-21. https://doi.org/10.1530/JOE-16-0513
[29]
Macheda, M.L., Rogers, S. and Best, J.D. (2005) Molecular and Cellular Regulation of Glucose Transporter (GLUT) Proteins in Cancer. Journal of Cell Physiology, 202, 654-662. https://doi.org/10.1002/jcp.20166
[30]
Ge, T.F., Law, P.Y., Wong, H.Y. and Ho, Y.Y. (2007) Gatifloxacin Affects GLUT1 Gene Expression and Disturbs Glucose Homeostasis in Vitro. European Journal of Pharmacology, 573, 70-74. https://doi.org/10.1016/j.ejphar.2007.07.038
[31]
Galazis, N., Galazi, M. and Atiomo, W. (2011) D-Chiro-inositol and Its Significance in Polycystic Ovary Syndrome: A Systematic Review. Gynecological Endocrinology, 27, 256-262. https://doi.org/10.3109/09513590.2010.538099
[32]
Takahashi, N., Kawada, T., Goto, T., Yamamoto, T., Taimatsu, A., Matsui, N., Kimura, K., Saito, M., Hosokawa, M., Miyashita, K. and Fushiki, T. (2002) Dual Action of Isoprenoids from Herbal Medicines on both PPARγ and PPARα in 3T3-L1 Adipocytes and HepG2 Hepatocytes. Federation of European Biochemical Societies Letters, 514, 315-322. https://doi.org/10.1016/S0014-5793(02)02390-6
[33]
Xu, H., Barnes, GT, Yang, Q., Tan G, Yang, D., Chou, Ch.J., Sole, J., Nichols, A., Ross, J.S., Tartaglia, L.A. and Chen, H. (2003) Chronic Inflammation in Fat Plays a Crucial Role in the Development of Obesity-Related Insulin Resistance. Journal of Clinical Investigation, 112, 1821-1830. https://doi.org/10.1172/JCI200319451
[34]
Dhiman, K., Gupta, A., Sharma, D.K., Gill, N.S. and Goyal, A. (2012) A Review on the Medicinally Important Plants of the Family Cucurbitaceae. Asian Journal of Clinical Nutrition, 4, 16-26. https://doi.org/10.3923/ajcn.2012.16.26