The oil palm (Elaeis
guineensis Jacq.) is a diploid perennial plant of the Arecaceae family. It
is the most important plant cultivated for oil production. To ensure this
production, certain optimal conditions are required: temperature, sunshine,
rainfall, etc. The oil palm ensures its survival through the fruits borne on
bunches located at the axis of the 17th to 20th leaves from the central stem.
From pollination to the maturity of a bunch it takes about 4.5 to 6 months.
Several events occur during this period: seed enlargement, weight increase,
colour change, etc., but also important physiological changes: synthesis of some
pigments (anthocyanin), increase in oil content correlated with the decrease in
water content, etc. All of these constitute factors that can provide a better
understanding of the biology of the seed. The aim of this work was to review
some of the important parameters involved in the development and maturation of
oil palm fruit bunches. These factors are classified into physiological,
biochemical as well as environmental. The physiological parameters are color,
appearance of embryo, seed weight and fruit detachment from bunches;
Biochemical parameters include water content, oil content, carbohydrate,
protein, mineral contents and lipase activity while temperature is the main
environmental factor that affects fruit maturation. Thorough research has not
yet been done at the different stages of maturation and ripening, thus a deep
look into this may open up new avenues for research on early germinated oil
palm seed production prior to seed dormancy.
Hoyle, D. and Levang, P. (2012) Le développement du palmier à huile au Cameroun. WWF, Yaoundé, 23 p.
[3]
Harun, M.H. and Noor, M.R.M. (2002) Fruit Set and Oil Palm Bunch Components. Journal of Oil Palm Research, 14, 24-33.
[4]
Corley, R. (1976) Sex Differentiation in Oil Palm: Effects of Growth Regulators. Journal of Experimental Botany, 27, 553-558. https://doi.org/10.1093/jxb/27.3.553
[5]
Wong, Y. and Hardon, J. (1971) A Comparison of Different Methods of Assisted Pollination in the Oil Palm. Chemara Research Station, Seremban.
[6]
Corley, R. and Tinker, P. (2015) The Oil Palm. Fifth Edition, John Wiley and Sons, Oxford, 239. https://doi.org/10.1002/9781118953297
[7]
Forster, B.P., Rusfiandi, H., Sitorus, A., et al. (2011) Oil Palm Fruit Development. PIPOC 2011 International Palm Oil Congress: Palm Oil Fortifying the World, Kuala Lumpur, 15-17 November 2011, 161-166.
[8]
Judd, W.S., Campbell, C.S., Kellogg, E.A. and Stevens, P. (2002) Botanique systématique: Une perspective phylogénétique. De Boeck Supérieur, Paris, 488 p.
[9]
Ngalle, H.B., Bell, J.M., Ngando-Ebongue, G.F., Eman-Evina, H., Ntsomboh, G.N. and Nsimi-Mva, A. (2014) Morphogenesis of Oil Palm (Elaeis guineensis Jacq.) Fruit in Seed Development. Journal of Life Sciences, 8, 946-954.
[10]
Kok, S.-Y., Namasivayam, P., Ee, G.C.-L. and Ong-Abdullah, M. (2013) Biochemical Characterisation during Seed Development of Oil Palm (Elaeis guineensis). Journal of Plant Research, 126, 539-547. https://doi.org/10.1007/s10265-013-0560-8
[11]
Crombie, W.M. (1956) Fat Metabolism in the West African Oil Palm (Elaeis guineensis) Part I. Fatty Acid Formation in the Maturing Kernel. Journal of Experimental Botany, 7, 181-193. https://doi.org/10.1093/jxb/7.2.181
[12]
Oo, K.-C., The, S.-K., Khor, H.-T. and Ong, A.S. (1985) Fatty Acid Synthesis in the Oil Palm (Elaeis guineensis): Incorporation of Acetate by Tissue Slices of the Developing Fruit. Lipids, 20, 205-210. https://doi.org/10.1007/BF02534189
[13]
Saka, S., Munusamy, M., Shibata, M., Tono, Y. and Miyafuji, H. (2008) Chemical Constituents of the Different Anatomical Parts of the Oil Palm (Elaeis guineensis) for Their Sustainable Utilization. Seminar Proceedings—Natural Resources & Energy Environment JSPS-VCC Program on Environmental Science, Engineering and Ethics (Group IX), Kyoto, 24-25 November 2008, 19-34.
[14]
Thomas, R., Sew, P., Mok, C., Chan, K., Easau, P. and Ng, S. (1971) Fruit Ripening in the Oil-Palm Elaeis guineensis. Annals of Botany, 35, 1219-1225.
https://doi.org/10.1093/oxfordjournals.aob.a084556
[15]
Henry, P. (1952) La germination des graines d’Elaeis (Suite et fin). Revue Internationale de Botanique Appliquée et d’agriculture Tropicale, 32, 66-77.
https://doi.org/10.3406/jatba.1952.6773
[16]
Vallade, J. (1965) Recherches morphologique et cytologique sur l’embryon d’Elaeis guineensis Jacq. Quiescent et en cours de germination, Dijon, 18 p.
[17]
Opute, F. (1975) Lipid Composition and the Role of the Haustorium in the Young Seedling of the West African Oil Palm, Elaeis guineensis Jacq. Annals of Botany, 39, 1057-1061. https://doi.org/10.1093/oxfordjournals.aob.a085024
[18]
Hussey, G. (1958) An Analysis of the Factors Controlling the Germination of the Seed of the Oil Palm, Elaeis guineensis (Jacq.). Annals of Botany, 22, 259-284.
https://doi.org/10.1093/oxfordjournals.aob.a083610
[19]
Prevot, P. (1962) Physiologie des plantes tropicales cultivées. ORSTOM, Paris, 39 p.
[20]
Ngalle, H.B., Bell, J.M., Ebongue, G.F.N., Nyobe, L., Ngangnou, F.C. and Ntsomboh, G.N. (2013) Morphogenesis of Oil Palm Fruit (Elaeis guineensis Jacq.) in Mesocarp and Endocarp Development. Journal of Life Sciences, 7, 153-158.
https://doi.org/10.17265/1934-7391/2013.02.008
[21]
Sambanthamurthi, R., Cheang, O.K. and Parman, S.H. (1995) Factors Affecting Lipase Activity in the Oil Palm (Elaeis guineensis) Mesocarp. In: Kader, J.-C. and Mazliak, P., Eds., Plant Lipid Metabolism, Springer, New York, 555-557.
https://doi.org/10.1007/978-94-015-8394-7_155
[22]
Heller, R., Esnault, R. and Lance, C. (2004) Physiologievégétale: Développement. Dunod, Paris, 366 p.
[23]
Heller, R., Esnault, R. and Lance, C. (2004) Physiologievégétale. N II développement. 6th éditions, Dunod, Paris, 323 p.
[24]
Mensah, G. (1999) Le palmier à huile, unarbre à buts multiples et une source de technologies traditionnelles variées. Bulletin de la Recherche Agronomique du Bénin, 9 p.
[25]
Lehninger, A., Nelson, D. and Cox, M. (1993) Principles of Biochemistry. 2nd Edition, Worth Publishers, New York.
[26]
Weber, M., Davies, J.J., Wittig, D., Oakeley, E.J., Haase, M., Lam, W.L. and Schuebeler, D. (2005) Chromosome-Wide and Promoter-Specific Analyses Identify Sites of Differential DNA Methylation in Normal and Transformed Human Cells. Nature Genetics, 37, 853-862. https://doi.org/10.1038/ng1598
[27]
Dardick, C. and Callahan, A.M. (2014) Evolution of the Fruit Endocarp: Molecular Mechanisms Underlying Adaptations in Seed Protection and Dispersal Strategies. Frontiers in Plant Science, 5, Article No. 284.
https://doi.org/10.3389/fpls.2014.00284
[28]
Chevalier, A. (1925) La Maturation des Fruits du Palmier à huile. Journal d’agriculture Traditionnelle et de Botanique Appliquée, 5, 122-131.
https://doi.org/10.3406/jatba.1925.4263
[29]
Wuidart, W. (1973) Evolution de la lipogenèse du régime de palmier à huileenfonction du pourcentage de fruits detaches. La Mé, 551 p.
[30]
Pérez, H.E., Hill, L.M. and Walters, C. (2012) An Analysis of Embryo Development in Palm: Interactions between Dry Matter Accumulation and Water Relations in Pritchardia remota (Arecaceae). Seed Science Research, 22, 97-111.
https://doi.org/10.1017/S0960258511000523
[31]
Aberlenc-Bertossi, F., Chabrillange, N., Corbineau, F. and Duval, Y. (2003) Acquisition of Desiccation Tolerance in Developing Oil Palm (Elaeis guineensis Jacq.) Embryos in Planta and in Vitro in Relation to Sugar Content. Seed Science Research, 13, 179-186. https://doi.org/10.1079/SSR2003135
[32]
Akinola, F., Oguntibeju, O., Adisa, A., Owojuyigbe, O., et al. (2010) Physico-Chemical Properties of Palm Oil from Different Palm Oil Local Factories in Nigeria. Journal of Food, Agriculture & Environment, 8, 264-269.
[33]
The, H.F., Neoh, B.K., Hong, M.P.L., Low, J.Y.S. and Ng, T.L.M. (2013) Differential Metabolite Profiles during Fruit Development in High-Yielding Oil Palm Mesocarp. PLOS ONE, 8, 61344. https://doi.org/10.1371/journal.pone.0061344
[34]
Wong, Y.C., The, H.F., Mebus, K., Ooi, T.E.K. and Kwong, Q.B. (2017) Differential Gene Expression at Different Stages of Mesocarp Development in High- and Low-Yielding Oil Palm. BMC Genomics, 18, Article No. 470.
https://doi.org/10.1186/s12864-017-3855-7
[35]
Westgate, M.E. and Grant, D.L.T. (1989) Water Deficits and Reproduction in Maize: Response of the Reproductive Tissue to Water Deficits at Anthesis and Mid-Grain Fill. Plant Physiology, 91, 862-867. https://doi.org/10.1104/pp.91.3.862
[36]
Nizam, A.A., Muthiyah, K. and Mahmud, M. (2020) Free Fatty Acid Formation in Oil Palm Fruits during Storage. IOP Conference Series: Materials Science and Engineering, 991, Article ID: 012009. https://doi.org/10.1088/1757-899X/991/1/012009
[37]
Kermode, A.R. (1990) Regulatory Mechanisms Involved in the Transition from Seed Development to Germination. Critical Reviews in Plant Sciences, 9, 155-195.
https://doi.org/10.1080/07352689009382286
[38]
Patil, K.J., Chopda, M.Z. and Mahajan, R.T. (2011) Lipase Biodiversity. Indian Journal of Science and Technology, 4, 971-982.
https://doi.org/10.17485/ijst/2011/v4i8.30
[39]
Ammar, A. (2014) Etude des Effets de fortes températures sur la production du pêcher et la qualité des fruits. PhD Thesis, Institut National d’Etudes Supérieures Agronomiques de Montpellier, Montpellier, 13 p.
[40]
Okello, R.C., de Visser, P.H., Heuvelink, E., Lammers, M., de Maagd, R.A., Struik, P.C. and Marcelis, L.F. (2015) A Multilevel Analysis of Fruit Growth of Two Tomato Cultivars in Response to Fruit Temperature. Physiologia Plantarum, 153, 403-418.
https://doi.org/10.1111/ppl.12247
[41]
Adra, F. (2017) Etude des effets d’une élévation de température sur la croissanceet le développement du pêcher: Conséquences sur la qualité des fruits. PhD Thesis, Universitéd’ Avignon, Avignon, 13 p.
[42]
Hatfield, J.L. and Prueger, J.H. (2015) Temperature Extremes: Effect on Plant Growth and Development. Weather and Climate Extremes, 10, 4-10.
https://doi.org/10.1016/j.wace.2015.08.001