全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于智能手机水稻叶色的最佳测试位置的确定及RGB值与SPAD值的关系
Determination of the Optimal Testing Location for Rice Leaf Color Based on Smartphones and the Relationship between RGB Value and SPAD Value

DOI: 10.12677/JOCR.2023.113011, PP. 109-115

Keywords: 水稻,SPAD值,智能手机,RGB值
Rice
, SPAD Value, Smartphone, RGB Value

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探明水稻叶色的最佳测试位置,最佳的颜色特征参数,并构建颜色特征参数与SPAD值的关系模型。利用叶绿素计(SPAD-502型)获取叶片的SPAD值及智能手机获取的颜色空间RGB值,分析叶片各测试位置的SPAD值之间的关系及颜色特征参数与SPAD值之间的关系。结果表明,水稻叶片中间1/2及上下3 cm处的SPAD值的平均值与整片叶的SPAD值平均值相关系数最高;水稻叶片两侧SPAD值的平均值、标准差、变异系数的大小分别为,光滑侧 > 粗糙侧、光滑侧 < 粗糙侧、光滑侧 < 粗糙侧,正背面接近1:1关系;颜色特征参数G-B值与SPAD值的相关性最好,并构建函数关系模型,YSPAD = ?0.4541XG-B + 64.4618 (n = 48, df = 45, R2 = 0.7475, F = 133.2052, p < 0.01)。综上,基于智能手机的颜色识别器测量水稻叶色,能为代替价格昂贵、性价比低、操作繁琐等仪器的水稻氮营养监测提供新方法。
To identify the optimal testing location and color feature parameters for rice leaf color, and to construct a relationship model between color feature parameters and SPAD values, a chlorophyll meter (SPAD-502 type) was used to obtain the SPAD value of leaves and the RGB value of color space obtained by a smartphone to analyze the relationship between SPAD values at various test positions of leaves and the relationship between color feature parameters and SPAD values. The results showed that the correlation coefficient between the average SPAD values at the middle 1/2 and upper and lower 3cm of rice leaves and the average SPAD values of the entire leaf was the highest. The average value, standard deviation, and coefficient of variation of SPAD values on both sides of rice leaves are as follows: smooth side > rough side, smooth side < rough side, smooth side < rough side, with a close 1:1 relationship between the front and back sides. The correlation between the color feature parameter G-B value and SPAD value is the best, and a functional relationship model is constructed, YSPAD = ?0.4541XG-B + 64.4618 (n = 48, df = 45, R2 = 0.7475, F = 133.2052, p < 0.01). In summary, color recognition devices based on smartphones can provide a new method for monitoring rice nitrogen nutrition, replacing expensive, cost-effective, and cumbersome instruments.

References

[1]  王磊, 卢艳丽, 白由路. 主要粮食作物基于SPAD的氮素营养诊断方法研究进展[J]. 植物营养与肥料学报, 2022, 28(3): 546-554.
[2]  李刚华, 丁艳锋, 薛利红, 等. 利用叶绿素计(SPAD-502)诊断水稻氮素营养和推荐追肥的研究进展[J]. 植物营养与肥料学报, 2005(3): 412-416.
[3]  贾良良, 陈新平, 张福锁. 作物氮营养诊断的无损测试技术[J]. 世界农业, 2001(6): 36-37.
[4]  王绍华, 曹卫星, 王强盛, 等. 水稻叶色分布特点与氮素营养诊断[J]. 中国农业科学, 2002(12): 1461-1466.
[5]  郭晓艺, 张林, 徐富贤, 等. 杂交中稻叶片SPAD值的田间测定方法研究[J]. 中国稻米, 2010, 16(5): 16-20.
[6]  Peng, S.B., Laza, M.R.C., Garcia, F.V., et al. (1995) Chlorophyll Meter Estimates Leaf Area-Based Nitrogen Concentration of Rice. Communications in Soil Science and Plant Analysis, 26, 927-935.
https://doi.org/10.1080/00103629509369344
[7]  徐梅宣, 陈飞帆, 彭效东. 基于SPAD的水稻氮素含量测量指标及模型研究[J]. 现代农业装备, 2019, 40(6): 55-60.
[8]  Yuan, S., Li, Y. and Peng, S.B. (2015) Leaf Lateral Asymmetry in Morphological and Physiological Traits of Rice Plant. PLOS ONE, 10, e129832.
https://doi.org/10.1371/journal.pone.0129832
[9]  李杰, 冯跃华, 麻井彪, 等. 2个超级杂交水稻剑叶主脉两侧SPAD值的差异表现[J]. 核农学报, 2017, 31(4): 777-786.
[10]  杨爱萍, 张坤, 段里成, 等. 基于RGB与HSV颜色空间的水稻齐穗后叶片SPAD值估测方法研究[J]. 江西农业学报, 2019, 31(8): 106-112.
[11]  孙爱珍, 杨红云, 何火娇. 基于SPAD值的水稻叶色变化过程可视化模拟[J]. 计算机工程与应用, 2017, 53(11): 233-236.
[12]  龚刚猛, 杨珺, 何火娇, 等. 水稻叶色RGB组分与SPAD的关系研究[J]. 中国农学通报, 2015, 31(24): 19-24.
[13]  李刚华, 薛利红, 尤娟, 等. 水稻氮素和叶绿素SPAD叶位分布特点及氮素诊断的叶位选择[J]. 中国农业科学, 2007(6): 1127-1134.
[14]  毛自朝. 植物生理学[M]. 武汉: 华中科技大学出版社, 2017: 418.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133