|
杨木与甘蔗渣共热解的研究
|
Abstract:
本研究利用热重分析仪研究了甘蔗渣和杨木的热解特性,并分析了混合比例对甘蔗渣和杨木共热解特性的影响,并利用热裂解仪–气相色谱/质谱联用仪(Py-GC/MS)研究了甘蔗渣和杨木共热解的产物分布。结果表明,杨木的热解过程主要分为三个阶段,而甘蔗渣的热解过程则被分为四个阶段。甘蔗渣的添加无法改变起始热解温度但使得最大热解速率对应温度向高温区移动,这说明共混会延缓纤维素的热解。共混物的半纤维素热解阶段表观活化能相较于杨木和甘蔗渣更高,这说明共混抑制了半纤维素的热解。而当杨木含量较高的情况下,纤维素热解活化能最低,这表明杨木和甘蔗渣共热解的纤维素热解阶段存在协同作用。此外,杨木和甘蔗渣的共热解还对于醛类化合物的生成具有协同作用,可以提高其相对含量。
In this study, the pyrolysis characteristics of bagasse and poplar were studied by the thermogravi-metric analyzer, and the effect of mixing ratio on the co-pyrolysis characteristics of bagasse and poplar was analyzed. The product distribution of co-pyrolysis of bagasse and poplar was studied by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The results showed that the pyroly-sis process of poplar was mainly divided into three stages, while the pyrolysis process of bagasse was divided into four stages. The addition of bagasse could not change the initial pyrolysis temper-ature but moved the maximum pyrolysis rate corresponding temperature to a higher temperature area, showing that the blending would delay the pyrolysis of cellulose. The apparent activation energy of the blends in the pyrolysis stage of hemicellulose is higher than that of poplar and bagasse, indicating that the blends inhibit the pyrolysis of hemicellulose. When the content of poplar was high, the activation energy of cellulose pyrolysis was the lowest, which indicated that there was a synergistic effect of the two pyrolyses in the cellulose pyrolysis stage. In addition, the co-pyrolysis of poplar and bagasse also has a synergistic effect on the formation of aldehydes, which can increase their relative content.
[1] | 菅之舆, 崔亚伟. 云南省生物质能利用形式及应用前景[J]. 农业与技术, 2015, 35(23): 23-25, 28. |
[2] | 周中仁, 吴文良. 生物质能研究现状及展望[J]. 农业工程学报, 2005, 21(12): 12-15. |
[3] | 王新德, 冷帅, 邱会哲, 等. 碱催化裂解甘蔗渣制备2,3-二氢苯并呋喃和苯[J]. 化工学报, 2014, 65(5): 1667-1672. |
[4] | 张旭. 松木和杨木热解-加氢催化制备航空煤油组分油的基础研究[D]: [硕士学位论文]. 昆明: 云南师范大学, 2019. |
[5] | 张梦宁, 姜志宏, 马中青. 杨木热解过程中的有机挥发物释放[J]. 林产工业, 2018, 45(12): 29-34. |
[6] | 卢辛成, 蒋剑春, 孙康, 孙云娟. 热解工艺对木醋液制备及性质的影响[J]. 林产化学与工业, 2018, 38(5): 61-69. |
[7] | 郭忠. 不同种类木质素热解特征及热解产物分析[D]: [硕士学位论文]. 长沙: 中南林业科技大学, 2017. |
[8] | Yang, S., Zhao, J., Hu, Z., Li, K. and Wang, T. (2022) Pyrolysis Behaviors during Banyan Root Development. Industrial Crops and Products, 176, Article ID: 114324. https://doi.org/10.1016/j.indcrop.2021.114324 |
[9] | Wang, T., Ai, Y., Peng, L., et al. (2018) Pyrolysis Characteristics of Poplar Sawdust by Pretreatment of Anaerobic Fermentation. Industrial Crops and Products, 125, 596-601. https://doi.org/10.1016/j.indcrop.2018.09.033 |
[10] | 陈锦中, 李仁山, 马明明, 等. 玉米秸秆与神府煤低温共热解焦油产率特性影响研究[J]. 当代化工, 2021, 50(9): 2064-2069. |
[11] | 李翠华, 何选明, 易霜, 等. 甘蔗渣与褐煤低温共热解产物特性分析[J]. 煤炭转化, 2017, 40(2): 29-35+41. |
[12] | Li, B.X. and Wei, W.J. (2016) Effect of Lignin on the Co-Pyrolysis of Sludge and Cellulose. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38, 1825-1831. https://doi.org/10.1080/15567036.2014.964816 |
[13] | Zhao, B.W., Wang, X. and Yang, X.Y. (2015) Co-Pyrolysis Characteristics of Microalgae Isochrysis and Chlorella: Kinetics, Biocrude Yield and Interaction. Bioresource Technology, 198, 332-339.
https://doi.org/10.1016/j.biortech.2015.09.021 |
[14] | Wang, T., Peng, L., Ai, Y., Zhang, R. and Lu, Q. (2018) Pyrolytic Behaviors of Decocting Residues of Rhodiola rosea. Journal of Analytical and Applied Pyrolysis, 129, 61-65. https://doi.org/10.1016/j.jaap.2017.12.003 |
[15] | ?ahin, ?., ?zdemir, M., Aslano?lu, M. and Beker, ü.G. (2001) Calcination Ki-netics of Ammonium Pentaborate Using the Coats-Redfern and Genetic Algorithm Method by Thermal Analysis. Industrial & Engi-neering Chemistry Research, 40, 1465-1470. https://doi.org/10.1021/ie000690f |
[16] | 赵欢欢, 邢文听, 宋香琳, 等. 玉米秸秆热解特性及动力学分析[J]. 生物质化学工程, 2022, 56(4): 9-14. |
[17] | 吴琼. 呼伦贝尔褐煤的热解特性研究[D]: [硕士学位论文]. 西安: 西北大学, 2016. |
[18] | 孙晨. 机械化学降解木质素及其在药用辅料中的应用研究[D]: [博士学位论文]. 杭州: 浙江工业大学, 2021. |
[19] | Pham, T.N., Sooknoi, T., Crossley, S.P. and Resasco, D.E. (2013) Ketonization of Carboxylic Acids: Mecha-nisms, Catalysts, and Implications for Biomass Conversion. ACS Catalysis, 3, 2456-2473. https://doi.org/10.1021/cs400501h |