The area covered by this study is the county of
Kakobola and its surroundings. Previous studies show that those related to the
study of depths by the gravity method, using other techniques, are not always
carried out until now. The main goal of this article is the gravimetric
characterization of our area by other approach. The interest is not only to map
the lineaments and to know their dip, but also to estimate the depths of these
different anomalies. The methods used for this study are the first total horizontal
derivative (FTHDT), tilt angle (TA),
analytical signal (AS) and horizontal gradient magnitude(HGM). The processing of the complete
Bouguer anomalies (CBA) data was done mainly
through software. Data analysis using the semi-finished body depth
method shows depths ranging from 7.49 m to 224.6 m. Data analysis using the AS method shows values ranging from 41.7 mGal/m to 510 mGal/m. The fractures and/or geological contacts in our
study area show dips ranging from -73.73°?to
68.16° and North-South orientation according to the tilt angle method.
The FTHDT shows several lineaments, a NE oriented fracture of Kakobola and low
dip values which suggest a tabular structure of the subsurface in our study
area. According to the HGM, the study area shows several preferential
directions of fractures and/or geological contacts whose the most frequent
directions are the NNE-SSW and WNW.
References
[1]
Abdelrahman, E. M., & Essa, K. S. (2015). Three Least-Squares Minimization Approaches to Interpret Gravity Data due to Dipping Faults. Pure and Applied Geophysics, 172, 427-438. https://doi.org/10.1007/s00024-014-0861-4
[2]
Ahmad, A., Bello, Y. I., Maharaz, M. N., Auwal, A., Abdulhameed, Y., Nasiru, B., & Hussaini, A. (2021). Interpretation of Gravity Data of Hadejia and Its Environs Using Tilt Angle Derivated Method. Dutse Journal of Pure and Applied Sciences (DUJOPAS), 7, 48-56. https://doi.org/10.4314/dujopas.v7i4b.10
[3]
Araffa, S. A. S., Sabet, H. S., & Gaweish, W. R. (2015). Integrated Geophysical Interpretation for Delineating the Structural Elements and Groundwater Aquifers at Central Part of Sinai Peninsula, Egypt. Journal of African Earth Sciences, 105, 93-106. https://doi.org/10.1016/j.jafrearsci.2015.02.011
[4]
Arisoy, M. Ö, & Dikmen, ü. (2013). Edge Detection of Magnetic Sources Using Enhanced Total Horizontal Derivative of the Tilt Angle. Yerbilimleri, 34, 73-82.
[5]
Blakely, R. J. (1995). Transformations. In Potential Theory in Gravity and Magnetic Applications (pp. 311-358). Cambridge University Press. https://doi.org/10.1017/CBO9780511549816.013
[6]
Cahen, L. & Lepersonne, J. (1948). Notes sur la géomorphologie du Congo occidental. Ann. Mus. Congo belge, Sér. in-8, Sc. géol., 1, 95 p.
[7]
Cordell, L., & Grauch, V. J. (1982). Mapping Basement Magnetization Zones from Aeromagnetic Data in the San Juan Basin, New Mexico. In SEG Technical Program Expanded Abstracts (pp. 246-248). Society of Exploration Geophysicists. https://doi.org/10.1190/1.1826915
[8]
De Ploey, J., Lepersonne, J., & Stoops, G. (1968). Sédimentologie et origine des sables de la série des sables ocre et de la série des grès polymorphes (système du Kalahari) au Congo occidental. Annales des Sciences Géologiques, Série No. 61. Musée Royal de l’Afrique Centrale.
[9]
Ekinci, Y. L., Ertekin, C., & Yiğitbaş, E. (2013). On the Effectiveness of Directional Derivative Based Filters on Gravity Anomalies for Source Edge Approximation: Synthetic Simulations and a Case Study from the Aegean Graben System (Western Anatolia, Turkey). Journal of Geophysics and Engineering, 10, Article ID: 035005. https://doi.org/10.1088/1742-2132/10/3/035005
[10]
Eshaghzadeh, A. (2017). Depth Estimation Using the Tilt Angle of Gravity Field due to the Semi-Infinite Vertical Cylindrical Source. Journal of Geological Research, 2017, Article ID: 3513272. https://doi.org/10.1155/2017/3513272
[11]
Essa, K. S. (2013). Gravity Interpretation of Dipping Faults Using the Variance Analysis Method. Journal of Geophysics and Engineering, 10, Article ID: 015003. https://doi.org/10.1088/1742-2132/10/1/015003
[12]
Essa, K. S., Eid, R., Abo-Ezz, E. R., & Géraud, Y. (2021). Utilizing the Analytical Signal Method in Prospecting Gravity Anomaly Profiles. Environmental Earth Sciences, 80, Article No. 591. https://doi.org/10.1007/s12665-021-09811-3
[13]
Essa, K. S., Mehanee, S. A., & Elhussein, M. (2020). Gravity Data Interpretation by a Two-Sided Fault-Like Geologic Structure Using the Global Particle Swarm Technique. Physics of the Earth and Planetary Interiors, 311, Article ID: 106631. https://doi.org/10.1016/j.pepi.2020.106631
[14]
Fehr, S. (1994). Le climat d’une station des basses-latitudes: Kikwit (Bandundu Central-Zaïre). Travaux du Laboratoire de Géographie Physique Appliquée, No. 12, 69-83. https://doi.org/10.3406/tlgpa.1993.908
[15]
Hinze, W. J., von Frese R. R. B., & Saad, A. H. (2013). Gravity and Magnetic Exploration: Principles, Practices, and Applications. Cambridge University Press. https://doi.org/10.1017/CBO9780511843129
[16]
Hosseini, S. A., Khah, N. K. F., Kianoush, P., Afzal, P., Shakiba S., & Jamshidi, E. (2023). Boundaries Determination in Potential Field Anomaly Utilizing Analytical Signal Filtering and Its Vertical Derivative in Qeshm Island SE Iran. Results in Geophysical Sciences, 14, Article ID: 100053. https://doi.org/10.1016/j.ringps.2023.100053
[17]
Hsu, S. K., Sibuet, J. C., & Shyu, C. T. (1996). High-Resolution Detection of Geologic Boundaries from Potential Anomalies: An Enhanced Analytic Signal Technique. Geophysics, 61, 373-386. https://doi.org/10.1190/1.1443966
[18]
Kadima, é. K., Sebagenzi, S. M. N., & Lucazeau, F. (2011). A Proterozoic-Rift Origin for the Structure and the Evolution of the Cratonic Congo Basin. Earth and Planetary Science Letters, 304, 240-250. https://doi.org/10.1016/j.epsl.2011.01.037
[19]
Kassia, V. S., Ndougsa-Mbarga, T., Meying, A., Ngoh, J. D., & Embeng, S. N. (2020). Structural Features Derived from a Multiscale Analysis and 2.75D Modelling of Aeromagnetic Data over the Pitoa-Figuil Area (Northern Cameroon). EGU, Preprint.
[20]
Keating, P., & Sailhac, P. (2004). Use of the Analytic Signal to Identify Magnetic Anomalies due to Kimberlite Pipes. Society of Exploration Geophysicists, 69, 180-190. https://doi.org/10.1190/1.1649386
[21]
Miller, H. G., & Singh, V. (1994). Potential Field Tilt—A New Concept for Location of Potential Field Sources. Journal of Applied Geophysics, 32, 213-217. https://doi.org/10.1016/0926-9851(94)90022-1
[22]
Ndala, T. I., Kalanga, K. B., Musitu, M. J., Mpiana, K. C., Kanda, N. V., & N’Zau Umba-di-Mbudi, C. (2022). Caractérisations sédimentologique et paléoenvironnementale du site de l’aménagement hydroélectrique de Kakobola et ses environs (Province du Kwilu/RD Congo). Geo-Eco-Trop, 46, 315-328.
[23]
Ndala, T. I., Musitu, M. J., Kalanga, K. B., & N’Zau Umba-di-Mbudi, C. (2023). Caractérisation des grès Céno-Mésozoiques du site d’aménagement hydroélectrique de Kakobola et ses environs par diffraction et fluorescence X (Province du Kwilu/RD Congo). Geo-Eco-Trop, 2, 329-342.
[24]
Oruç, B. (2018). Edge Interpretation Using Horizontal Gradient Magnitude, Tilt Angle and Continuous Wavelet Transform of Magnetic Anomalies of the SAROS Bay and Surroundings, Turkey. In International Science and Technology Conference. ISTEC.
[25]
Prasad, K. N. D., Pham, L. T., Singh, A. P., Eldosouky, A. M., Abdelrahman, K., Fnais, M. S., & Gómez-Ortiz, D. (2022). A Novel Enhanced Total Gradient (ETG) for Interpretation of Magnetic Data. Minerals, 12, Article No. 1468. https://doi.org/10.3390/min12111468
[26]
Reynolds, J. M. (2011). An Introduction to Applied and Environmental Geophysics. Wiley-Blackwell.
[27]
Roest, W. R., Verhoef, J., & Pilkington, M. (1992). Magnetic Interpretation Using the 3-D Analytic Signal. Geophysics, 57, 116-125. https://doi.org/10.1190/1.1443174
[28]
Salem, A., Williams, S., Fairhead, D., Smith R., & Ravat, D. (2008). Interpretation of Magnetic Data Using Tilt-Angle Derivatives. Geophysics, 73, L1-L10. https://doi.org/10.1190/1.2799992
[29]
Turnbull, R. E., Allibone, A. H., Matheys, F., Fanning, C. M., Kasereka, E., Kabete, J., McMaughton, N. J., Mwandale, E., & Holliday, J. (2021). Geology and Geochronology of the Archean Plutonic Rocks in the Northeast Democratic Republic of Congo. Precambrian Research, 358, Article ID: 106133. https://doi.org/10.1016/j.precamres.2021.106133
[30]
Zhou, S., Huang, D., & Jiao, J. (2017). Total Horizontal Derivatives of Potential Field Three Dimensional Structure Tensor and Their Application to Detect Source Edges. Acta Geodaetica et Geophysica, 52, 317-329. https://doi.org/10.1007/s40328-016-0171-7