|
无人机路径规划算法研究综述
|
Abstract:
近年来随着技术和市场的不断发展,无人机的应用越来越广泛。而无人机路径规划算法作为其中重要的一环,在保证准确性和安全性的同时为其提供了关键的技术支撑。本文对无人机路径规划算法的研究进行了综述,依次介绍了传统路径规划算法中的搜索算法与采样算法以及智能仿生算法等的基本原理、在路径规划中的应用研究及其优缺点。最后,本文对未来无人机路径规划算法的发展趋势进行了展望。我们认为未来的无人机路径规划算法将更加注重实时性、高效性和智能化,针对不同的任务和应用场景研究相应的多无人机协同路径规划方法,并在多学科领域中进行深入交叉与融合。
With the continuous development of technology and market in recent years, the application of UAVs is becoming more and more widespread. The UAV path planning algorithm, as an important part of it, provides key technical support while ensuring accuracy and safety. This paper reviews the research on UAV path planning algorithms, and introduces the basic principles of the traditional path planning algorithms such as search algorithms and sampling algorithms, as well as intelligent bionic algorithms, their application in path planning and their advantages and disadvantages in turn. Finally, this paper provides an outlook on the future development trend of UAV path planning algorithms. We believe that future UAV path planning algorithms will focus more on real-time, efficiency and intelligence, and research corresponding multi-UAV collaborative path planning methods for different tasks and application scenarios, and carry out indepth intersection and integration in multidisciplinary fields.
[1] | Dijkstra, E.W. (1959) A Note on Two Problems in Connection with Graphs. Numerische Mathematics, 1, 269-271.
https://doi.org/10.1007/BF01386390 |
[2] | 鲍培明. Dijkstra算法在动态权值系统中的应用[J]. 计算机工程, 2000(4): 11-12+23. |
[3] | 巩慧, 倪翠, 王朋, 程诺. 基于Dijkstra算法的平滑路径规划方法[J/OL]. 北京航空航天大学学报: 1-10.
https://doi.org/10.13700/j.bh.1001-5965.2022.0377, 2023-06-09. |
[4] | 王超, 王银花. 一种改进Dijkstra算法的UAV路径规划[J]. 信息技术与信息化, 2021(10): 217-219. |
[5] | Hart, P.E., Nilsson, N.J. and Raphael, B. (1972) Correction to “A Formal Basis for the Heuristic Determination of Minimum Cost Paths”. ACM SIGART Bulletin, 37, 28-29. https://doi.org/10.1145/1056777.1056779 |
[6] | 吴鹏, 桑成军, 陆忠华, 等. 基于改进A*算法的移动机器人路径规划研究[J]. 计算机工程与应用, 2019, 55(21): 227-233. |
[7] | 王小红, 叶涛. 基于改进A*算法机器人路径规划研究[J]. 计算机测量与控制, 2018, 26(7): 282-286. |
[8] | 龚云鑫, 刘桂华, 张文凯, 余东应, 崔云轩, 沈正斌. 利用凸角点改进A*算法的路径规划方法[J/OL]. 计算机工程与应用: 1-10. http://kns.cnki.net/kcms/detail/11.2127.TP.20220719.1456.002.html, 2023-06-09. |
[9] | Kavraki, L.E., Svestka, P., Latombe, J.C., et al. (1996) Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces. IEEE Transactions on Robotics and Automation, 12, 566-580.
https://doi.org/10.1109/70.508439 |
[10] | 邹善席, 王品, 韩旭. 基于PRM改进的路径规划算法[J]. 组合机床与自动化加工技术, 2019(1): 1-3. |
[11] | 程谦, 高嵩, 曹凯, 等. 基于PRM优化算法的移动机器人路径规划[J]. 计算机应用与软件, 2020, 37(12): 254-259, 296. |
[12] | 薛阳, 孙越, 叶晓康, 等. 基于近似最近邻搜索的改进PRM算法[J]. 计算机工程与设计, 2021, 42(11): 3211-3217. https://doi.org/10.16208/j.issn1000-7024.2021.11.028 |
[13] | Lavalle, S.M. and Kuffner, J.J. (2000) Rapid-ly-Exploring Random Trees: Progress and Prospects. Algorithmic & Computational Robotics New Directions. |
[14] | Ka-raman, S. and Frazzoli, E. (2011) Sampling-Based Algorithms for Optimal Motion Planning. The International Journal of Robotics Research, 30, 846-894. https://doi.org/10.1177/0278364911406761 |
[15] | 侯宇翔, 高焕兵, 汪子健, 等. 改进RRT的移动机器人路径规划算法[J]. 电子测量技术, 2022, 45(16): 47-52. |
[16] | Khatib, O. (1986) Re-al-Time Obstacle Avoidance System for Manipulators and Mobile Robots. The International Journal of Robotics Re-search, 5, 90-98. https://doi.org/10.1177/027836498600500106 |
[17] | 何炳坤, 丛屾. 一种改进人工势场的路径规划方法[J]. 黑龙江大学工程学报, 2023, 14(1): 44-50. |
[18] | 李钧泽, 孙咏, 焦艳菲, 等. 基于改进人工势场的AGV路径规划算法[J]. 计算机系统应用, 2022, 31(3): 269-274. |
[19] | 张驰, 郭媛, 黎明. 人工神经网络模型发展及应用综述[J]. 计算机工程与应用, 2021, 57(11): 57-69. |
[20] | 陈秋莲, 郑以君, 蒋环宇, 等. 基于神经网络改进粒子群算法的动态路径规划[J]. 华中科技大学学报(自然科学版), 2021, 49(2): 51-55. https://doi.org/10.13245/j.hust.210207 |
[21] | 李少波, 宋启松, 李志昂, 等. 遗传算法在机器人路径规划中的研究综述[J]. 科学技术与工程, 2020, 20(2): 423-431. |
[22] | 汤云峰, 赵静, 谢非, 等. 基于改进遗传算法的机器人路径规划方法[J]. 南京师范大学学报(工程技术版), 2021, 21(3): 49-55. |
[23] | 白云飞, 胡大裟, 蒋玉明, 等. 改进遗传算法在AGV路径规划的应用[J]. 现代计算机, 2021(16): 69-73. |
[24] | Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T., Eds. (2004) Ant Colony Optimization and Swarm Intelligence: 4th Interna-tional Workshop, ANTS 2004. Proceedings. Springer Berlin, Heidelberg.
https://doi.org/10.1007/b99492 |
[25] | 江明, 王飞, 葛愿, 等. 基于改进蚁群算法的移动机器人路径规划研究[J]. 仪器仪表学报, 2019(2): 40(2): 113-115. |
[26] | Cheng, J., Miao, Z., Bing, L., et al. (2016) An Improved ACO Al-gorithm for Mobile Robot Path Planning. Proceedings of 2016 IEEE International Conference on Information and Au-tomation (ICIA), Ningbo, 1-3 August 2016, 963-968. https://doi.org/10.1109/ICInfA.2016.7831958 |
[27] | Chen, L.,Su, Y., Zhang, D., Leng, Z., Qi, Y. and Jiang, K. (2021) Research on Path Planning for Mobile Robots Based on Im-proved ACO. Proceedings of 2021 36th Youth Academic Annual Conference of Chinese Association of Automation (YAC), Nanchang, 28-30 May 2021, 379-383. https://doi.org/10.1109/YAC53711.2021.9486664 |
[28] | Karaboga, D. and Basturk, B. (2007) A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Col-ony (ABC) Algorithm. Journal of Global Optimization, 39, 459-471.
https://doi.org/10.1007/s10898-007-9149-x |
[29] | 李保胜, 李士心, 刘晓倩, 等. 基于改进人工蜂群算法的无人机路径规划研究[J]. 计算机科学与应用, 2022, 12(9): 2179-2184. |
[30] | 朱金磊, 袁晓兵, 裴俊. 基于改进人工蜂群算法的灾害场景下路径规划[J]. 中国科学院大学学报, 2023, 40(3): 397-405. |