全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于DinoPose的列车司机手比行为检测研究
Research on Hand Signal Behavior Detection of Train Driver Based on DinoPose

DOI: 10.12677/CSA.2023.137136, PP. 1382-1389

Keywords: Dino网络,DinoPose,骨架点检测,Transformer
Dino Network
, DinoPose, Skeleton Point Detection, Transformer

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究针对铁路场景列车驾驶室驾驶员监控视频图像提出了一种列车司机手势动作识别算法模型DinoPose。通过引入Transformers中的编码器–解码器结构来实现基于回归的人体骨架关键点检测,有效地将Dino网络的应用场景从目标检测扩展至人体骨架检测。通过多组列车驾驶室的视频图像所抽取的关键帧数据集测试,本文提出法在精度上优于Openpose和Yolo-pose算法,其中mAP达到了95.72%,手比项点的检测准确率达到85.74%以上,能够满足铁路局机务段机车司机室监控视频智能分析的实际业务需求。
This study proposes a train driver gesture action recognition algorithm model DinoPose for video images of train cab driver monitoring in railroad scenes. By introducing the encoder-decoder structure in Transformers to achieve regression-based human skeleton key point detection, the application scenario of Dino network is effectively extended from target detection to human skeleton detection. Tested by the key frame dataset extracted from multiple sets of video images of train cabs, the proposed method in this paper outperforms Openpose and Yolo-pose algorithms in terms of accuracy, where the mAP reaches 95.72% and the detection accuracy of hand ratio item points reaches more than 85.74%, which can meet the actual business requirements of intelligent analysis of locomotive driver’s cab monitoring video in the locomotive section of railroad bureau.

References

[1]  徐瑞. 市场经济条件下的铁路交通运输经济管理[J]. 中关村, 2022(7): 112-113.
[2]  贾子若. 铁路机车司机工作压力与安全绩效关系研究[D]: [博士学位论文]. 北京交通大学, 2013.
[3]  王永硕. 列车司机不规范行为监测系统设计[D]: [硕士学位论文]. 北京: 北京交通大学, 2022
https://doi.org/10.26944/d.cnki.gbfju.2022.002204
[4]  Fang, H.S., Li, J., Tang, H., et al. (2022) Alphapose: Whole-Body Regional Multi-Person Pose Estimation and Tracking in Real-Time. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 7157-7173.
https://doi.org/10.1109/TPAMI.2022.3222784
[5]  叶鹏君. 基于图像识别的列车司机驾驶行为监测及关键技术研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2020.
https://doi.org/10.26944/d.cnki.gbfju.2020.000792
[6]  Cao, Z., Hidalgo, G., Simon, T., et al. (2018) Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 21-26 July 2017, 1302-1310.
https://doi.org/10.1109/CVPR.2017.143
[7]  所达. 城轨列车司机行车确认手势动作行为识别方法研究[D]: [硕士学位论文]. 北京: 北京交通大学,2021.
https://doi.org/10.26944/d.cnki.gbfju.2021.001694
[8]  王涛. 基于RepC3D模型的地铁司机手势动作识别[D]: [硕士学位论文]. 武汉: 武汉纺织大学, 2022.
https://doi.org/10.27698/d.cnki.gwhxj.2022.000116
[9]  Vaswani, A., Shazeer, N., Parmar, N., et al. (2017) At-tention Is All You Need. (Preprint)
[10]  Carion, N., Massa, F., Synnaeve, G., et al. (2020) End-to-End Object Detection with Transformers. In: Vedaldi, A., Bischof, H., Brox, T. and Frahm, J.M., Eds., ECCV 2020: Computer Vision-ECCV 2020, Lecture Notes in Computer Science, Vol. 12346, Springer, Cham, 213-229.
https://doi.org/10.1007/978-3-030-58452-8_13
[11]  Liu, S., Li, F., Zhang, H., et al. (2022) DAB-DETR: Dynamic Anchor Boxes Are Better Queries for DETR. (Preprint)
[12]  Li, F., Zhang, H., Liu, S., et al. (2022) DN-DETR: Accel-erate DETR Training by Introducing Query DeNoising. 2022 Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, 18-24 June 2022, 13609-13617.
https://doi.org/10.1109/CVPR52688.2022.01325
[13]  Zhang, H., Li, F., Liu, S., et al. (2022) DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection. (Preprint)
[14]  杨志刚. LKJ2000型列车运行监控记录装置[M]. 北京: 中国铁道出版社, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133